Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients
暂无分享,去创建一个
[1] James A. Nichols,et al. Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..
[2] Christoph Schwab,et al. Wavelet approximations for first kind boundary integral equations on polygons , 1996 .
[3] Albert Cohen,et al. Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients , 2016, Journal of Fourier Analysis and Applications.
[4] Claude Jeffrey Gittelson,et al. Representation of Gaussian fields in series with independent coefficients , 2010 .
[5] Hamilton-Jacobi Equations,et al. Multigrid Methods for , 2011 .
[6] F. Lindgren,et al. Exploring a New Class of Non-stationary Spatial Gaussian Random Fields with Varying Local Anisotropy , 2013, 1304.6949.
[7] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..
[8] R. Adler. The Geometry of Random Fields , 2009 .
[9] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[10] Christoph Schwab,et al. QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs , 2016 .
[11] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[12] Christoph Schwab,et al. Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..
[13] Julia Charrier,et al. Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..
[14] Lukas Herrmann. Strong convergence analysis of iterative solvers for random operator equations , 2019, Calcolo.
[15] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[16] H. Rue,et al. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .
[17] V. Bogachev. Gaussian Measures on a , 2022 .
[18] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[19] Christoph Schwab,et al. QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights , 2018, Numerische Mathematik.
[20] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[21] Ariel L. Lombardi,et al. Anisotropic mesh refinement in polyhedral domains: error estimates with data in L^2(\Omega) , 2013, 1303.2960.
[22] Thomas Apel,et al. Local mesh refinement for the discretization of Neumann boundary control problems on polyhedra , 2016 .
[23] Albert Cohen,et al. Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.
[24] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[25] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[26] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[27] Frances Y. Kuo,et al. Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.
[28] I. Babuška,et al. Direct and inverse error estimates for finite elements with mesh refinements , 1979 .
[29] Albert Cohen,et al. Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients , 2015, 1509.07045.
[30] Frances Y. Kuo,et al. Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.
[31] C. Schwab,et al. Numerical analysis of lognormal diffusions on the sphere , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.
[32] Yoshihito Kazashi,et al. Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients , 2017, 1701.05974.
[33] Albert Cohen,et al. Fully Discrete Approximation of Parametric and Stochastic Elliptic PDEs , 2017, SIAM J. Numer. Anal..
[34] M. Pelagatti. Stationary Processes , 2011 .
[35] Frances Y. Kuo,et al. Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..
[36] C. Schwab,et al. Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs , 2018 .
[37] Ricardo H. Nochetto,et al. Tensor FEM for Spectral Fractional Diffusion , 2017, Foundations of Computational Mathematics.
[38] Frances Y. Kuo,et al. Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..
[39] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[40] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[41] Frances Y. Kuo,et al. Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..
[42] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[43] Pedro Morin,et al. Convergence rates for adaptive finite elements , 2008, 0803.3824.
[44] Victor Nistor,et al. Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D , 2015, Math. Comput..
[45] F. Lutscher. Spatial Variation , 2019, Interdisciplinary Applied Mathematics.
[46] P. G. Ciarlet,et al. Linear and Nonlinear Functional Analysis with Applications , 2013 .
[47] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[48] J. Rossmann,et al. Elliptic Equations in Polyhedral Domains , 2010 .
[49] Rob Stevenson,et al. A quadratic finite element wavelet Riesz basis , 2018, Int. J. Wavelets Multiresolution Inf. Process..
[50] Frances Y. Kuo,et al. Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.
[51] Andrew M. Stuart,et al. How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..
[52] R. Adler,et al. The Geometry of Random Fields , 1982 .
[53] Hengguang Li,et al. An anisotropic finite element method on polyhedral domains: interpolation error analysis , 2016, Math. Comput..