Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients

We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite Element Method (FEM) for a scalar diffusion equation with log-Gaussian, isotropic coefficients in a bounded, polytopal domain D ⊂ ℝd. The multilevel algorithm QL* which we analyze here was first proposed, in the case of parametric PDEs with sequences of independent, uniformly distributed parameters in Kuo et al. (Found. Comput. Math. 15 (2015) 411–449). The random coefficient is assumed to admit a representation with locally supported coefficient functions, as arise for example in spline- or multiresolution representations of the input random field. The present analysis builds on and generalizes our single-level analysis in Herrmann and Schwab (Numer. Math. 141 (2019) 63–102). It also extends the MLQMC error analysis in Kuo et al. (Math. Comput. 86 (2017) 2827–2860), to locally supported basis functions in the representation of the Gaussian random field (GRF) in D, and to product weights in QMC integration. In particular, in polytopal domains D ⊂ ℝd, d=2,3, our analysis is based on weighted function spaces to describe solution regularity with respect to the spatial coordinates. These spaces allow GRFs and PDE solutions whose realizations become singular at edges and vertices of D. This allows for non-stationary GRFs whose covariance operators and associated precision operator are fractional powers of elliptic differential operators in D with boundary conditions on ∂D. In the weighted function spaces in D, first order, Lagrangian Finite Elements on regular, locally refined, simplicial triangulations of D yield optimal asymptotic convergence rates. Comparison of the ε-complexity for a class of Matérn-like GRF inputs indicates, for input GRFs with low sample regularity, superior performance of the present MLQMC-FEM with locally supported representation functions over alternative representations, e.g. of Karhunen–Loève type. Our analysis yields general bounds for the ε-complexity of the MLQMC algorithm, uniformly with respect to the dimension of the parameter space.

[1]  James A. Nichols,et al.  Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..

[2]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[3]  Albert Cohen,et al.  Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients , 2016, Journal of Fourier Analysis and Applications.

[4]  Claude Jeffrey Gittelson,et al.  Representation of Gaussian fields in series with independent coefficients , 2010 .

[5]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[6]  F. Lindgren,et al.  Exploring a New Class of Non-stationary Spatial Gaussian Random Fields with Varying Local Anisotropy , 2013, 1304.6949.

[7]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..

[8]  R. Adler The Geometry of Random Fields , 2009 .

[9]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[10]  Christoph Schwab,et al.  QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs , 2016 .

[11]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[12]  Christoph Schwab,et al.  Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..

[13]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[14]  Lukas Herrmann Strong convergence analysis of iterative solvers for random operator equations , 2019, Calcolo.

[15]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[16]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[17]  V. Bogachev Gaussian Measures on a , 2022 .

[18]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[19]  Christoph Schwab,et al.  QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights , 2018, Numerische Mathematik.

[20]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[21]  Ariel L. Lombardi,et al.  Anisotropic mesh refinement in polyhedral domains: error estimates with data in L^2(\Omega) , 2013, 1303.2960.

[22]  Thomas Apel,et al.  Local mesh refinement for the discretization of Neumann boundary control problems on polyhedra , 2016 .

[23]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.

[24]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[25]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[26]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[27]  Frances Y. Kuo,et al.  Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.

[28]  I. Babuška,et al.  Direct and inverse error estimates for finite elements with mesh refinements , 1979 .

[29]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients , 2015, 1509.07045.

[30]  Frances Y. Kuo,et al.  Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.

[31]  C. Schwab,et al.  Numerical analysis of lognormal diffusions on the sphere , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[32]  Yoshihito Kazashi,et al.  Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients , 2017, 1701.05974.

[33]  Albert Cohen,et al.  Fully Discrete Approximation of Parametric and Stochastic Elliptic PDEs , 2017, SIAM J. Numer. Anal..

[34]  M. Pelagatti Stationary Processes , 2011 .

[35]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[36]  C. Schwab,et al.  Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs , 2018 .

[37]  Ricardo H. Nochetto,et al.  Tensor FEM for Spectral Fractional Diffusion , 2017, Foundations of Computational Mathematics.

[38]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[39]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[40]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[41]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[42]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[43]  Pedro Morin,et al.  Convergence rates for adaptive finite elements , 2008, 0803.3824.

[44]  Victor Nistor,et al.  Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D , 2015, Math. Comput..

[45]  F. Lutscher Spatial Variation , 2019, Interdisciplinary Applied Mathematics.

[46]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[47]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[48]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[49]  Rob Stevenson,et al.  A quadratic finite element wavelet Riesz basis , 2018, Int. J. Wavelets Multiresolution Inf. Process..

[50]  Frances Y. Kuo,et al.  Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.

[51]  Andrew M. Stuart,et al.  How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..

[52]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[53]  Hengguang Li,et al.  An anisotropic finite element method on polyhedral domains: interpolation error analysis , 2016, Math. Comput..