Output synchronization of chaotic systems under nonvanishing perturbations

In this paper, an analysis for chaos synchronization under nonvanishing perturbations is presented. In particular, we use model-matching approach from nonlinear control theory for output synchronization of identical and nonidentical chaotic systems under nonvanishing perturbations in a master–slave configuration. We show that the proposed approach is indeed suitable to synchronize a class of perturbed slaves with a chaotic master system; that is the synchronization error trajectories remain bounded if the perturbations satisfy some conditions. In order to illustrate this robustness synchronization property, we present two cases of study: (i) for identical systems, a pair of coupled Rossler systems, the first like a master and the other like a perturbed slave, and (ii) for nonidentical systems, a Chua’s circuit driving a Rossler/slave system with a perturbed control law, in both cases a quantitative analysis on the perturbation is included.

[1]  A. Isidori Nonlinear Control Systems , 1985 .

[2]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[3]  Jessy W. Grizzle,et al.  Asymptotic model matching for nonlinear systems , 1994, IEEE Trans. Autom. Control..

[4]  M. D. Di Benedetto,et al.  Asymptotic nonlinear model matching , 1990, 29th IEEE Conference on Decision and Control.

[5]  César Cruz-Hernández,et al.  Communicating via synchronized time-delay Chua’s circuits , 2008 .

[6]  Henk Nijmeijer,et al.  Synchronization through extended Kalman filtering , 1999 .

[7]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Rafael Castro-Linares,et al.  Stability of discrete nonlinear systems under novanishing pertuabations: application to a nonlinear model-matching problem , 1999 .

[10]  César Cruz-Hernández,et al.  Output Synchronization of Chaotic Systems: Model-Matching Approach with Application to Secure Communication , 2005 .

[11]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[12]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[13]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[14]  Aneta Stefanovska,et al.  Synchronization and modulation in the human cardiorespiratory system , 2000 .

[15]  O. Rössler An equation for continuous chaos , 1976 .

[16]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[17]  César Cruz-Hernández,et al.  EXPERIMENTAL REALIZATION OF BINARY SIGNALS TRANSMISSION BASED ON SYNCHRONIZED LORENZ CIRCUITS , 2004 .

[18]  Henk Nijmeijer,et al.  Synchronization through Filtering , 2000, Int. J. Bifurc. Chaos.

[19]  César Cruz-Hernández,et al.  Synchronization of Time-Delay Chua's Oscillator with Application to Secure Communication , 2004 .

[20]  Didier López-Mancilla,et al.  Experimental Realization of Binary Signals Transmission Using Chaos , 2005, J. Circuits Syst. Comput..

[21]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[22]  F. Mormann,et al.  Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients , 2000 .

[23]  Rafael Castro-Linares,et al.  Stability robustness of linearizing controllers with state estimation for discrete‐time nonlinear systems , 2001 .

[24]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[25]  Hebertt Sira-Ramírez,et al.  Synchronization of Chaotic Systems: a generalized Hamiltonian Systems Approach , 2001, Int. J. Bifurc. Chaos.

[26]  Pablo Varona,et al.  Nonlinear Cooperative Dynamics of Living Neurons , 2000, Int. J. Bifurc. Chaos.

[27]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.