Micromagnetic modelling—the current state of the art

The increasing information density in magnetic recording, the miniaturization in magnetic sensor technology, the trend towards nanocrystalline magnetic materials and the improved availability of large-scale computer power are the main reasons why micromagnetic modelling has been developing extremely rapidly. Computational micromagnetism leads to a deeper understanding of hysteresis effects by visualization of the magnetization reversal process. Recent advances in numerical simulation techniques are reviewed. Higher order finite elements and adaptive meshing have been introduced, in order to reduce the discretization error. The use of a hybrid boundary/finite element method enables accurate stray field computation for arbitrary shaped particles and takes into account the granular microstructure of the material. A dynamic micromagnetic code based on the Gilbert equation of motion to study the time evolution of the magnetization has been developed. Finite element models for different materials and magnet shapes are obtained from a Voronoi construction and subsequent meshing of the polyhedral regions. Adaptive refinement and coarsening of the finite element mesh guarantees accurate solutions near magnetic inhomogeneities or domain walls, while keeping the number of elements small. The polycrystalline microstructure and assumed random magnetocrystalline anisotropy of elongated Co elements decreases the coercive field and the switching time compared to zero anisotropy elements, in which vortices form and move only after a certain waiting time after the application of a reversed field close to the coercive field. NiFe elements with flat, rounded and slanted ends show different hysteresis properties and switching dynamics. Micromagnetic simulations show that the magnetic properties of intergranular regions in nucleation-controlled Nd-Fe-B hard magnetic materials control the coercive field. Exchange interactions between neighbouring soft and hard grains lead to remanence enhancement of isotropically oriented grains in nanocrystalline composite magnets. Upper limits of the coercive field of pinning-controlled Sm-Co magnets for high-temperature applications are predicted from the micromagnetic calculations. Incorporating thermally activated magnetization reversal and micromagnetics we found complex magnetization reversal mechanisms for small spherical magnetic particles. The magnetocrystalline anisotropy and the external field strength determine the switching mechanism. Three different regimes have been identified. For fields, which are smaller than the anisotropy field, magnetization by coherent switching has been observed. Single droplet nucleation occurs, if the external field is comparable to the anisotropy field, and multi-droplet nucleation is the driving reversal process for higher fields.

[1]  Stephen E. Russek,et al.  High-speed characterization of submicrometer giant magnetoresistive devices , 1999 .

[2]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[3]  T. Schrefl,et al.  Numerical simulation of magnetization reversal in hard magnetic materials using a finite element method , 1992 .

[4]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[5]  A. Moustaide,et al.  Magnetic and random anisotropy studies in amorphous Fe76−xNixCr4B12Si8 (0⩽x⩽10) , 1999 .

[6]  Jian-Gang Zhu,et al.  Micromagnetic Modeling: Theory and Applications in Magnetic Thin Films. , 1995 .

[7]  Roy W. Chantrell,et al.  A method for the numerical simulation of the thermal magnetization fluctuations in micromagnetics , 1993 .

[8]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[9]  D. Fredkin,et al.  Stochastic dynamic micromagnetic study of fine particles , 1999 .

[10]  M. Schabes,et al.  Magnetostatic interaction fields for a three-dimensional array of ferromagnetic cubes , 1987 .

[11]  Werner Scholz,et al.  Micromagnetic simulation of thermally activated switching in fine particles , 2001 .

[12]  H. Fukunaga,et al.  Effect of Intergrain Exchange Interaction on Magnetic Properties in Isotropic Nd-Fe-B Magnets , 1992 .

[13]  W. Coffey,et al.  Thermally Activated Relaxation Time of a Single Domain Ferromagnetic Particle Subjected to a Uniform Field at an Oblique Angle to the Easy Axis: Comparison with Experimental Observations , 1998 .

[14]  Kennedy,et al.  Monte carlo simulation with time step quantification in terms of langevin dynamics , 2000, Physical review letters.

[15]  A. Aharoni,et al.  Magnetostatic energy calculations , 1991 .

[16]  Wyn Williams,et al.  Three-dimensional micromagnetic calculations for magnetite using FFT , 1996 .

[17]  R. Victora Micromagnetic predictions for barium ferrite particles (invited) , 1988 .

[18]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .

[19]  J. Chapman,et al.  A Higher Order FEM-BEM Method For The Calculation Of Domain Processes In Magnetic Nano-elements , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[20]  E. Torre Magnetization calculation of fine particles , 1986 .

[21]  T. Schrefl,et al.  Modelling of exchange-spring permanent magnets , 1998 .

[22]  R. Street,et al.  Mechanically alloyed nanocomposite magnets (invited) , 1998 .

[23]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[24]  N. Demerdash,et al.  Theoretical and numerical difficulties in 3D-Vector potential methods in finite element magnetostatic computations , 1990, International Conference on Magnetics.

[25]  Jian-Gang Zhu,et al.  Micromagnetic studies of thin metallic films (invited) , 1988 .

[26]  Werner Scholz,et al.  Mesh refinement in FE-micromagnetics for multi-domain Nd2Fe14B particles , 1999 .

[27]  Christina H. Chen,et al.  New sintered high temperature Sm-Co based permanent magnet materials , 1999 .

[28]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[29]  Ryoichi Kikuchi,et al.  On the Minimum of Magnetization Reversal Time , 1956 .

[30]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  D. Garanin,et al.  FOKKER-PLANCK AND LANDAU-LIFSHITZ-BLOCH EQUATIONS FOR CLASSICAL FERROMAGNETS , 1997, cond-mat/9805054.

[32]  H. Davies Nanocrystalline exchange-enhanced hard magnetic alloys , 1996 .

[33]  Peter P. Silvester,et al.  Finite elements for electrical engineers: Finite Elements for Electrical Engineers , 1996 .

[34]  J. N. Chapman,et al.  Simulation of magnetization reversal in polycrystalline patterned Co elements , 1999 .

[35]  P. Asselin,et al.  On the field Lagrangians in micromagnetics , 1986 .

[36]  Linda R. Petzold,et al.  Algorithms and software for ordinary differential equations and differential-algebraic equations, part II: higher-order methods and software packages , 1995 .

[37]  D. R. Fredkin,et al.  Dynamical micromagnetics by the finite element method , 1987 .

[39]  R. Ramesh,et al.  Magnetization reversal in nucleation controlled magnets. I. Theory , 1988 .

[40]  T. Schrefl Finite elements in numerical micromagnetics: Part I: granular hard magnets , 1999 .

[41]  J. Zhu,et al.  Computed hysteresis behavior and interaction effects in spheroidal particle assemblies , 1993 .

[42]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[43]  D. Berkov,et al.  Quasistatic remagnetization processes in two-dimensional systems with random on-site anisotropy and dipolar interaction: Numerical simulations , 1998 .

[44]  William J. Gallagher,et al.  Magnetization Reversal in Micron-Sized Magnetic Thin Films , 1998 .

[45]  R. Fischer,et al.  Two‐ and three‐dimensional calculation of remanence enhancement of rare‐earth based composite magnets (invited) , 1994 .

[46]  Mely Chen Chi,et al.  Random anisotropy in amorphous ferromagnets , 1978 .

[47]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[48]  Y. Nakatani,et al.  Two interacting cubic particles: effect of placement on switching field and magnetisation reversal mechanism , 1991 .

[49]  Peter P. Silvester,et al.  Finite Elements for Electrical Engineers , 1983 .

[51]  G. Herzer,et al.  Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets , 1990, International Conference on Magnetics.

[52]  Y. Nakatani,et al.  Computer simulation of thermal fluctuation of fine particle magnetization based on Langevin equation , 1997 .

[53]  F. Rothwarf,et al.  High resolution electron microscope study of Sm(Co, Fe, Cu, Zr) 7.5 magnets , 1983 .

[54]  T. Schrefl,et al.  Finite element modeling of nanocomposite magnets , 1999, IEEE International Magnetics Conference.

[55]  Gérard Meunier,et al.  Finite element modeling of unbounded problems using transformations: a rigorous, powerful and easy solution , 1992 .

[56]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.

[57]  E. H. Frei,et al.  Critical Size and Nucleation Field of Ideal Ferromagnetic Particles , 1957 .

[58]  M. Schabes,et al.  Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles , 1991 .

[59]  J. Zhu Modeling of multilayer thin film recording media , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[60]  J. Oti,et al.  A micromagnetic model of dual-layer magnetic-recording thin films , 1993 .

[61]  J. V. Opheusden,et al.  Computer simulation of a thin magnetic film with vertical anisotropy , 1990 .

[62]  R. Mittra,et al.  Asymptotic boundary conditions for finite element analysis of three-dimensional transmission line discontinuities , 1990 .

[63]  Jian-Gang Zhu,et al.  The effect of end and edge shape on the performance of pseudo-spin valve memories , 1998 .

[64]  A. Hernando,et al.  Effect of the hard magnetic inclusion on the macroscopic anisotropy of nanocrystalline magnetic materials , 1993 .

[65]  G. Hadjipanayis,et al.  Magnetic hysteresis in melt-spun Nd-Fe-Al-B-Si alloys with high remanence , 1988 .

[66]  A. Aharoni Theoretical Search for Domain Nucleation , 1962 .

[67]  G. Hadjipanayis,et al.  Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets , 2000 .

[68]  J. Penman,et al.  Self-adaptive mesh generation technique for the finite-element method , 1987 .

[69]  A. Kadin,et al.  High performance isotropic permanent magnet based on Nd-Fe-B , 1987 .

[70]  Magnetization switching in small ferromagnetic particles: Nucleation and coherent rotation , 1998, cond-mat/9809237.

[71]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[72]  Inaba,et al.  Damping constants of Co-Cr-Ta and Co-Cr-Pt thin films , 1997 .

[73]  A. Hernando,et al.  On the Role of Intergranular Exchange Coupling in the Magnetization Process of Permanent-Magnet Materials , 1992 .

[74]  D. Mailly,et al.  Mesoscopic effects in magnetism: Submicron to nanometer size single particle measurements , 1997 .

[75]  E. Torre,et al.  Identification of stiff modes in micromagnetic problems , 1997 .

[76]  H. Kronmüller,et al.  Micromagnetic examination of exchange coupled ferromagnetic nanolayers , 1997 .

[77]  Magnetization switching in a Heisenberg model for small ferromagnetic particles , 1998, cond-mat/9801154.

[78]  Hans Jurgen Richter,et al.  Recent advances in the recording physics of thin-film media , 1999 .

[79]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[80]  T. Schrefl,et al.  Dynamic micromagnetics of nanocomposite NdFeB magnets , 1997 .

[81]  Thomas Schrefl,et al.  Micromagnetics simulation of high energy density permanent magnets , 2000 .

[82]  Stephen Y. Chou,et al.  Patterned magnetic nanostructures and quantized magnetic disks , 1997, Proc. IEEE.

[83]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[84]  Yasutaro Uesaka,et al.  Direct Solution of the Landau-Lifshitz-Gilbert Equation for Micromagnetics , 1989 .

[85]  H. Stadelmaier,et al.  Relation of remanence and coercivity of Nd,(Dy)‐Fe,(Co)‐B sintered permanent magnets to crystallite orientation , 1994 .

[86]  H. Kronmüller,et al.  FUNDAMENTAL MAGNETIZATION PROCESSES IN NANOSCALED COMPOSITE PERMANENT MAGNETS , 1998 .

[87]  Kronmüller,et al.  Remanence and coercivity in isotropic nanocrystalline permanent magnets. , 1994, Physical review. B, Condensed matter.

[88]  J. N. Chapman,et al.  Domain structures and switching mechanisms in patterned magnetic elements , 1997 .

[89]  Dietrich Marsal Finite Differenzen und Elemente : numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen , 1989 .

[90]  J. Miles,et al.  The role of microstructure inmicromagnetic models of longitudinal thin film magnetic media , 1990, International Conference on Magnetics.

[91]  G. Thomas,et al.  Microstructure and magnetic properties , 1977 .

[92]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[93]  H. Bertram,et al.  Dynamics of thermally activated reversal in nonuniformly magnetized single particles , 1997 .

[94]  R. Fischer,et al.  Importance of ideal grain boundaries of high remanent composite permanent magnets , 1998 .

[95]  T. R. Koehler,et al.  Hybrid FEM-BEM method for fast micromagnetic calculations , 1997 .

[96]  Philip E. Gill,et al.  Practical optimization , 1981 .

[97]  C. D. Waard,et al.  Meltspun permanent magnet materials containing Fe3B as the main phase , 1989 .

[98]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[99]  Michael J. Donahue,et al.  Exchange energy representations in computational micromagnetics , 1997 .

[100]  Metastable lifetimes in a kinetic Ising model: Dependence on field and system size. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[101]  Generalized nonstandard finite differences and physical applications , 1998 .

[102]  H. Neal Bertram,et al.  Magnetization processes in ferromagnetic cubes , 1988 .

[103]  Riccardo Hertel,et al.  Adaptive finite element mesh refinement techniques in three-dimensional micromagnetic modeling , 1998 .

[104]  V. Menushenkov,et al.  Simulation of intergranular interaction in sintered magnets , 1992 .

[105]  D. Jiles,et al.  Metal-bonded Co-ferrite composites for magnetostrictive torque sensor applications , 1999, IEEE International Magnetics Conference.

[106]  J. N. Chapman,et al.  Lorentz microscopy of small magnetic structures (invited) , 1999 .

[107]  J. N. Chapman,et al.  Micromagnetic simulation of the long-range interaction between NiFe nano-elements using the BE-method , 1999 .

[108]  Computational approaches to thermally activated fast relaxation , 1998 .

[109]  S. W. Yuan,et al.  Fast adaptive algorithms for micromagnetics , 1992 .

[110]  E. Torre,et al.  REVERSAL MODES IN FINE PARTICLES , 1988 .

[111]  R. Blank,et al.  What determines the demagnetization in Nd-Fe-B magnets ? , 1991 .

[112]  Dennis W. Hewett,et al.  Embedded curve boundary method for micromagnetic simulations , 2000 .

[113]  Thomas Schrefl,et al.  Finite element micromagnetic simulations with adaptive mesh refinement , 1997 .

[114]  D. R. Fredkin,et al.  Finite element methods for micromagnetics , 1992 .

[115]  H. Kronmüller,et al.  Dynamics of magnetisation states , 1999 .

[116]  B. Streibl,et al.  Domain wall pinning in high temperature SM(Co, Fe, Cu, Zr)7-8 magnets , 2000 .

[117]  D. Fredkin,et al.  Dynamical micromagnetics of a ferromagnetic particle: Numerical studies , 1996 .

[118]  S. Hirosawa,et al.  Microstructure and magnetic properties of high-remanence Nd/sub 5/Fe/sub 71.5/Co/sub 5/B/sub 18.5/M (M=Al, Si, Ga, Ag, Au) rapidly solidified and crystallized alloys for resin-bonded magnets , 1993 .

[119]  Qiushi Chen,et al.  A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems , 1997 .

[120]  P. Baras,et al.  2D and 3D calculations of micromagnetic wall structures using finite elements , 1991 .

[121]  Avner Friedman Exchange energy representations in computational micromagnetics , 1998 .