Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics
暂无分享,去创建一个
F. Mainardi | E. C. Oliveira | J. Vaz | F. Mainardi | E. Capelas de Oliveira | J. Jr. Vaz | E. C. de Oliveira
[1] R. Cole,et al. Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .
[2] Olof J. Staffans,et al. Volterra Integral and Functional Equations , 1990 .
[3] Karina Weron,et al. HAVRILIAK-NEGAMI RESPONSE IN THE FRAMEWORK OF THE CONTINUOUS-TIME RANDOM WALK ∗ , 2005 .
[4] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals , 1938 .
[5] Renat T. Sibatov,et al. Fractional relaxation and wave equations for dielectrics characterized by the Havriliak-Negami response function ? , 2010, 1008.3972.
[6] K. Miller,et al. Completely monotonic functions , 2001 .
[7] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[8] K. Cole,et al. Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .
[9] I. Podlubny. Fractional differential equations , 1998 .
[10] Vladimir V. Uchaikin,et al. Fractional Wave Equation for Dielectric Medium with Havriliak–Negami Response , 2012 .
[11] R. Hilfer,et al. H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] A. Jonscher. Dielectric relaxation in solids , 1983 .
[13] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[14] Harry Pollard,et al. The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .
[15] V. V. Novikov,et al. Anomalous relaxation in dielectrics. Equations with fractional derivatives , 2005 .
[16] R. Gorenflo,et al. Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.
[17] R. Hilfer. Analytical representations for relaxation functions of glasses , 2002 .
[18] S. Havriliak,et al. A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .
[19] Armen H. Zemanian,et al. Realizability theory for continuous linear systems , 1972 .
[20] K. Cole,et al. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .
[21] D. Widder,et al. The Laplace Transform , 1943, The Mathematical Gazette.
[22] R. Cole,et al. Dielectric Relaxation in Glycerine , 1950 .
[23] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[24] M. Teuerle,et al. Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Arak M. Mathai,et al. The H-Function , 2010 .
[26] S. Havriliak,et al. A complex plane analysis of α‐dispersions in some polymer systems , 2007 .
[27] A. Hanyga,et al. On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation , 2008 .
[28] Rudolf Hilfer,et al. Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .
[29] R. Gorenflo,et al. Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.
[30] K. Diethelm. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .
[31] V. Kiryakova. Generalized Fractional Calculus and Applications , 1993 .
[32] Karina Weron,et al. Heavy-tail properties of relaxation time distributions underlying the Havriliak–Negami and the Kohlrausch–Williams–Watts relaxation patterns , 2007 .
[33] Aleksander Stanislavsky,et al. Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.
[34] Kenneth S. Miller,et al. A Note on the Complete Monotonicity of the Generalized Mittag-Leffler Function , 1997 .
[35] F. Mainardi,et al. for anomalous relaxation in dielectrics , 2011 .
[36] Karina Weron,et al. Relaxation of dynamically correlated clusters , 2002 .
[37] Raoul R. Nigmatullin,et al. Cole-Davidson dielectric relaxation as a self-similar relaxation process , 1997 .
[38] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .