Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics

Abstract.We revisit the Mittag-Leffler functions of a real variable t, with one, two and three order-parameters {α,β,γ}, as far as their Laplace transform pairs and complete monotonicity properties are concerned. These functions, subjected to the requirement to be completely monotone for t > 0, are shown to be suitable models for non–Debye relaxation phenomena in dielectrics including as particular cases the classical models referred to as Cole–Cole, Davidson–Cole and Havriliak–Negami. We show 3D plots of the relaxations functions and of the corresponding spectral distributions, keeping fixed one of the three order-parameters.

[1]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[2]  Olof J. Staffans,et al.  Volterra Integral and Functional Equations , 1990 .

[3]  Karina Weron,et al.  HAVRILIAK-NEGAMI RESPONSE IN THE FRAMEWORK OF THE CONTINUOUS-TIME RANDOM WALK ∗ , 2005 .

[4]  E. C. Titchmarsh Introduction to the Theory of Fourier Integrals , 1938 .

[5]  Renat T. Sibatov,et al.  Fractional relaxation and wave equations for dielectrics characterized by the Havriliak-Negami response function ? , 2010, 1008.3972.

[6]  K. Miller,et al.  Completely monotonic functions , 2001 .

[7]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[8]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[9]  I. Podlubny Fractional differential equations , 1998 .

[10]  Vladimir V. Uchaikin,et al.  Fractional Wave Equation for Dielectric Medium with Havriliak–Negami Response , 2012 .

[11]  R. Hilfer,et al.  H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Jonscher Dielectric relaxation in solids , 1983 .

[13]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[14]  Harry Pollard,et al.  The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .

[15]  V. V. Novikov,et al.  Anomalous relaxation in dielectrics. Equations with fractional derivatives , 2005 .

[16]  R. Gorenflo,et al.  Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.

[17]  R. Hilfer Analytical representations for relaxation functions of glasses , 2002 .

[18]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[19]  Armen H. Zemanian,et al.  Realizability theory for continuous linear systems , 1972 .

[20]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[21]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[22]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[23]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[24]  M. Teuerle,et al.  Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Arak M. Mathai,et al.  The H-Function , 2010 .

[26]  S. Havriliak,et al.  A complex plane analysis of α‐dispersions in some polymer systems , 2007 .

[27]  A. Hanyga,et al.  On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation , 2008 .

[28]  Rudolf Hilfer,et al.  Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .

[29]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[30]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[31]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[32]  Karina Weron,et al.  Heavy-tail properties of relaxation time distributions underlying the Havriliak–Negami and the Kohlrausch–Williams–Watts relaxation patterns , 2007 .

[33]  Aleksander Stanislavsky,et al.  Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.

[34]  Kenneth S. Miller,et al.  A Note on the Complete Monotonicity of the Generalized Mittag-Leffler Function , 1997 .

[35]  F. Mainardi,et al.  for anomalous relaxation in dielectrics , 2011 .

[36]  Karina Weron,et al.  Relaxation of dynamically correlated clusters , 2002 .

[37]  Raoul R. Nigmatullin,et al.  Cole-Davidson dielectric relaxation as a self-similar relaxation process , 1997 .

[38]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .