Silver nanocluster aptamers: in situ generation of intrinsically fluorescent recognition ligands for protein detection.

We have synthesized an intrinsically fluorescent recognition ligand that combines the high fluorescence quantum yield (>50%) of oligonucleotide templated AgNCs with the specificity and strong binding affinity of DNA aptamers for their target proteins, to develop a new strategy for detection of specific proteins.

[1]  Jennifer S. Martinez,et al.  Nanoparticle Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature , 2007, MRS Online Proceedings Library.

[2]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[3]  M F Kubik,et al.  Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. , 1997, Journal of molecular biology.

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  Shaojun Dong,et al.  Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II) , 2008 .

[6]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[7]  Tom Vosch,et al.  Oligonucleotide-stabilized Ag nanocluster fluorophores. , 2008, Journal of the American Chemical Society.

[8]  Weiwei Guo,et al.  Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. , 2010, Journal of the American Chemical Society.

[9]  P. Goodwin,et al.  Base-Directed Formation of Fluorescent Silver Clusters. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[11]  Joshua E. Smith,et al.  Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. , 2007, Analytical chemistry.

[12]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[13]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[14]  H. Yeh,et al.  Formation and Stabilization of Fluorescent Gold Nanoclusters Using Small Molecules , 2010 .

[15]  Yun Xiang,et al.  Ultrasensitive label-free aptamer-based electronic detection. , 2007, Angewandte Chemie.

[16]  Yi Xiao,et al.  Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. , 2004, Journal of the American Chemical Society.

[17]  Yun Xiang,et al.  Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. , 2006, Journal of the American Chemical Society.

[18]  Masato Saito,et al.  Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures. , 2008, Analytical biochemistry.

[19]  Arica A Lubin,et al.  Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. , 2009, Journal of the American Chemical Society.

[20]  E. Wang,et al.  Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. , 2007, Chemical communications.

[21]  Jason J. Han,et al.  A DNA--silver nanocluster probe that fluoresces upon hybridization. , 2010, Nano letters.

[22]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[23]  H. Yeh,et al.  A complementary palette of fluorescent silver nanoclusters. , 2010, Chemical communications.

[24]  E. Gwinn,et al.  Hairpins with Poly-C Loops Stabilize Four Types of Fluorescent Agn:DNA , 2009 .

[25]  E. Gwinn,et al.  Sequence‐Dependent Fluorescence of DNA‐Hosted Silver Nanoclusters , 2008 .

[26]  M. Goto,et al.  Conjugation of DNA with protein using His-tag chemistry and its application to the aptamer-based detection system , 2008, Biotechnology Letters.

[27]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[28]  Chih-Ching Huang,et al.  Highly selective DNA-based sensor for lead(II) and mercury(II) ions. , 2009, Analytical chemistry.

[29]  Kurt V Gothelf,et al.  Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[30]  G. F. Joyce,et al.  In vitro evolution of nucleic acids. , 1994, Current opinion in structural biology.

[31]  Kevin W Plaxco,et al.  Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing , 2007, Nature Protocols.

[32]  Weihong Tan,et al.  Nucleic acid aptamers for biosensors and bio-analytical applications. , 2009, The Analyst.