Deformed exponentials and logarithms in generalized thermostatistics
暂无分享,去创建一个
[1] R. Hartley. Transmission of information , 1928 .
[2] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[3] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[4] C. Tsallis,et al. Generalized statistical mechanics : connection with thermodynamics , 1991 .
[5] C. Tsallis. What are the Numbers that Experiments Provide , 1994 .
[6] Pedro A. Pury,et al. Non-standard thermal statistics with q-entropies , 1996 .
[7] C. Tsallis,et al. The role of constraints within generalized nonextensive statistics , 1998 .
[8] Ernesto P. Borges. On a q -generalization of circular and hyperbolic functions , 1998 .
[9] Jan Naudts. Dual description of nonextensive ensembles , 1999 .
[10] RIGOROUS RESULTS IN NON-EXTENSIVE THERMODYNAMICS , 1999, math-ph/9908025.
[11] G. Kaniadakis,et al. Non-linear kinetics underlying generalized statistics , 2001 .
[12] Generalized thermostatistics and Kolmogorov-Nagumo averages , 2001, cond-mat/0110077.
[13] VI. Dynamic and Thermodynamic Stability of Nonextensive Systems , 2001 .
[14] A. M. Scarfone,et al. A new one-parameter deformation of the exponential function , 2002 .
[15] J. Naudts,et al. Thermostatistics based on Kolmogorov–Nagumo averages: unifying framework for extensive and nonextensive generalizations , 2001, cond-mat/0106324.
[16] Bruce J. West,et al. Classical and Quantum Complexity and Non-extensive Thermodynamics , 2002 .