Inferring genetic interactions from comparative fitness data

Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that genetic interactions can often be inferred from fitness rank orders, where all genotypes are ordered according to fitness, and even from partial fitness orders. We provide a complete characterization of rank orders that imply higher order epistasis. Our theory applies to all common types of gene interactions and facilitates comprehensive investigations of diverse genetic interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite Plasmodium vivax, the fungus Aspergillus niger, and the TEM-family of β-lactamase associated with antibiotic resistance. For all systems, our approach revealed higher order interactions among mutations.

[1]  Joachim Krug,et al.  Evolutionary Accessibility of Mutational Pathways , 2011, PLoS Comput. Biol..

[2]  A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax , 2016, Malaria Journal.

[3]  Bernd Sturmfels,et al.  Rational Design of Antibiotic Treatment Plans: A Treatment Strategy for Managing Evolution and Reversing Resistance , 2015, PloS one.

[4]  Chris S. Haley,et al.  Detecting epistasis in human complex traits , 2014, Nature Reviews Genetics.

[5]  Devin Greene,et al.  The peaks and geometry of fitness landscapes. , 2013, Journal of theoretical biology.

[6]  C. Brandon Ogbunugafor,et al.  Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance , 2016, PLoS Comput. Biol..

[7]  Debbie S. Yuster,et al.  A complete classification of epistatic two-locus models , 2006, BMC Genetics.

[8]  N. Beerenwinkel,et al.  The geometry of partial fitness orders and an efficient method for detecting genetic interactions , 2018, Journal of Mathematical Biology.

[9]  S. Cobey,et al.  Fitness Landscapes Reveal Simple Strategies for Steering Evolution to Minimize Antibiotic Resistance , 2016, bioRxiv.

[10]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[11]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[12]  R. Lenski,et al.  Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population , 2011, Science.

[13]  Marc A Suchard,et al.  Stability-mediated epistasis constrains the evolution of an influenza protein , 2013, eLife.

[14]  D. Mosier,et al.  Fitness Epistasis and Constraints on Adaptation in a Human Immunodeficiency Virus Type 1 Protein Region , 2010, Genetics.

[15]  James O Lloyd-Smith,et al.  Adaptation in protein fitness landscapes is facilitated by indirect paths , 2016, bioRxiv.

[16]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[17]  J. Krug,et al.  Empirical fitness landscapes and the predictability of evolution , 2014, Nature Reviews Genetics.

[18]  S. Elena,et al.  Epistasis and the Adaptability of an RNA Virus , 2005, Genetics.

[19]  J. Krug,et al.  Exact results for amplitude spectra of fitness landscapes. , 2013, Journal of theoretical biology.

[20]  Devin Greene,et al.  The Changing Geometry of a Fitness Landscape Along an Adaptive Walk , 2013, PLoS Comput. Biol..

[21]  L. Chao,et al.  FUNCTIONAL ORIGINS OF FITNESS EFFECT‐SIZES OF COMPENSATORY MUTATIONS IN THE DNA BACTERIOPHAGE ØX174 , 2006, Evolution; international journal of organic evolution.

[22]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[23]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[24]  H. Girardey,et al.  Trajectories , 2009, Handbook of Critical Agrarian Studies.

[25]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[26]  Dan S. Tawfik,et al.  Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein , 2006, Nature.

[27]  C. Petropoulos,et al.  Evidence for Positive Epistasis in HIV-1 , 2004, Science.

[28]  Alexander G. Fletcher,et al.  Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance , 2015, PLoS Comput. Biol..

[29]  Rafael Sanjuán,et al.  The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Robert B. Heckendorn,et al.  Should evolutionary geneticists worry about higher-order , 2013 .

[31]  J. Krug,et al.  Quantitative analyses of empirical fitness landscapes , 2012, 1202.4378.

[32]  R. Watson,et al.  PERSPECTIVE: SIGN EPISTASIS AND GENETIC COSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005, Evolution; international journal of organic evolution.

[33]  M. Segal,et al.  Relating HIV-1 Sequence Variation to Replication Capacity via Trees and Forests , 2004, Statistical applications in genetics and molecular biology.

[34]  D. J. Kiviet,et al.  Empirical fitness landscapes reveal accessible evolutionary paths , 2007, Nature.

[35]  Marcelo Kallmann,et al.  Designing Antibiotic Cycling Strategies by Determining and Understanding Local Adaptive Landscapes , 2013, PloS one.

[36]  L. Pachter,et al.  EPISTASIS AND SHAPES OF FITNESS LANDSCAPES , 2006, q-bio/0603034.

[37]  K. Crona,et al.  Higher order epistasis and fitness peaks , 2017, 1708.02063.

[38]  Jennifer L. Knies,et al.  Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase , 2017, Molecular biology and evolution.

[39]  D. J. Kiviet,et al.  Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. , 2011, Journal of theoretical biology.

[40]  Rafael Sanjuán,et al.  Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  Michael J. Harms,et al.  High-order epistasis shapes evolutionary trajectories , 2017, PLoS Comput. Biol..

[42]  Karin J. Metzner,et al.  A Framework for Inferring Fitness Landscapes of Patient-Derived Viruses Using Quasispecies Theory , 2014, Genetics.

[43]  Todd Holden,et al.  A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. , 2006, Journal of theoretical biology.

[44]  Michael J Harms,et al.  Detecting High-Order Epistasis in Nonlinear Genotype-Phenotype Maps , 2016, Genetics.

[45]  Lior Pachter,et al.  Toward the Human Genotope , 2007, Bulletin of mathematical biology.

[46]  Robert B. Heckendorn,et al.  Should evolutionary geneticists worry about higher-order epistasis? , 2013, Current opinion in genetics & development.

[47]  N. Beerenwinkel,et al.  The Geometry of Partial Fitness Orders and an Efficient Method for Detecting Genetic Interactions , 2017, bioRxiv.

[48]  H. A. Orr,et al.  Fitness and its role in evolutionary genetics , 2009, Nature Reviews Genetics.

[49]  Volker Kaibel,et al.  Abstract objective function graphs on the 3-cube , 1998 .

[50]  Nigel F. Delaney,et al.  Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins , 2006, Science.

[51]  Eugene I Shakhnovich,et al.  A biophysical protein folding model accounts for most mutational fitness effects in viruses , 2011, Proceedings of the National Academy of Sciences.

[52]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.