Electrical Facility Effects on Hall Thruster Cathode Coupling: Performance and Plume Properties

The impact of facility conductivity on Hall effect thruster cathode coupling is experimentally investigated. The 3.4 kW Aerojet Rocketdyne T-140 Hall effect thruster operating at a discharge voltage of 300 V, a discharge current of 10.3 A, and an anode flow rate of 11.6  mg/s serves as a representative Hall effect thruster test bed. The nominal facility operating pressure during thruster operation is 7.3×10−6  Torr corrected for xenon. Two 0.91×0.91  m square aluminum plates are placed adjacent to, but electrically isolated from, the walls of the conductive vacuum chamber at two locations with respect to the center of the thruster exit plane: 4.3 m axially downstream along the thruster centerline, and 2.3 m radially outward centered on the exit plane. The plates and body of the Hall effect thruster are configured in three distinct electrical configurations with corresponding measurements: 1) electrically grounded with measurements of currents to ground, 2) electrically isolated with measurements of floati...

[1]  Iain D. Boyd,et al.  Far field modeling of the plasma plume of a Hall thruster , 2002 .

[2]  R. Hofer,et al.  Development and characterization of high -efficiency, high -specific impulse xenon Hall thrusters. , 2004 .

[3]  D. A. King,et al.  Electrical Facility Effects on Hall-Effect-Thruster Cathode Coupling: Discharge Oscillations and Facility Coupling , 2016 .

[4]  Henry Oman,et al.  Fundamentals of Electric Propulsion , 2006 .

[5]  James Szabo,et al.  Determination of In-Orbit Plume Characteristics from Laboratory Measurements , 2006 .

[6]  L. B. King,et al.  Hall-Effect Thruster -- Cathode Coupling Part II: Ion Beam and Near-Field Plume , 2009 .

[7]  E. C. Fossum Electron transport in E x B devices , 2009 .

[8]  Preliminary Assessment of the Role of a Conducting Vacuum Chamber in the Hall Effect Thruster Electrical Circuit , 2014 .

[9]  Alec D. Gallimore,et al.  The Effects of Nude Faraday Probe Design and Vacuum Facility Backpressure on the Measured Ion Current Density Profile of Hall Thruster Plumes , 2002 .

[10]  Raymond Liang,et al.  The Effect of Background Pressure on SPT-100 Hall Thruster Performance , 2014 .

[11]  Alec D. Gallimore,et al.  Evaluation of Plume Divergence and Facility Effects on Far-Field Faraday Probe Current Density Profiles , 2009 .

[12]  Alec D. Gallimore,et al.  Hall Thruster Cluster Operation with a Shared Cathode , 2007 .

[13]  N. Hershkowitz,et al.  Emissive probes , 2011 .

[14]  Gregory G. Spanjers,et al.  Performance characteristics of a 5 kW laboratory hall thruster , 1998 .

[15]  Kunning G. Xu,et al.  Ion collimation and in-channel potential shaping using in-channel electrodes for hall effect thrusters , 2012 .

[16]  A. Jakubowski Effect of Angle of Incidence on the Response of Cylindrical Electrostatic Probes at Supersonic Speeds , 1972 .

[17]  Alec D. Gallimore,et al.  Effect of Backpressure on Ion Current Density Measurements in Hall Thruster Plumes , 2005 .

[18]  James E. Polk,et al.  One-Dimensional Hollow Cathode Model , 2003 .

[19]  R. Wirz,et al.  Effects of Internally Mounted Cathodes on Hall Thruster Plume Properties , 2008, IEEE Transactions on Plasma Science.

[20]  J. R. Pierce,et al.  Scientific foundations of vacuum technique , 1949 .

[21]  Hani Kamhawi,et al.  Investigation of the Effects of Facility Background Pressure on the Performance and Operation of the High Voltage Hall Accelerator , 2014 .

[22]  V. M. Donnelly,et al.  Control of ion energy distributions using a pulsed plasma with synchronous bias on a boundary electrode , 2011 .

[23]  F. Culick,et al.  Asteroid retrieval feasibility , 2012, 2012 IEEE Aerospace Conference.

[24]  Richard R. Hofer,et al.  Finite Pressure Effects in Magnetically Shielded Hall Thrusters , 2014 .

[25]  Dan M. Goebel,et al.  Cathode Coupling in Hall Thrusters , 2007 .

[26]  R. Jahn,et al.  Physics of Electric Propulsion , 1968 .

[27]  Mitchell L. R. Walker,et al.  Effects of facility backpressure on the performance and plume of a Hall thruster. , 2005 .

[28]  PLUME MEASUREMENT AND MODELING RESULTS FOR A XENON HOLLOW CATHODE , 2002 .

[29]  Tate Schappell,et al.  Testing of a U.S.-built HET system for orbit transfer applications , 1999 .

[30]  I. Mikellides,et al.  Driving Processes in the Orifice and Near-Plume Regions of a Hollow Cathode , 2006 .

[31]  Jason D. Frieman,et al.  Role of a Conducting Vacuum Chamber in the Hall Effect Thruster Electrical Circuit , 2014 .

[32]  M. Brown,et al.  Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas , 2011 .

[33]  B. M. Reid,et al.  The Influence of Neutral Flow Rate in the Operation of Hall Thrusters. , 2009 .

[34]  Rostislav Spektor,et al.  Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator , 2014 .

[35]  Iain D. Boyd,et al.  Review of Hall Thruster Plume Modeling , 2001 .

[36]  Alec D. Gallimore,et al.  Neutral density map of Hall thruster plume expansion in a vacuum chamber , 2005 .

[37]  Lyon B. King,et al.  Effect of Cathode Position on Hall-Effect Thruster Performance and Cathode Coupling Voltage , 2007 .

[38]  V. M. Donnelly,et al.  Ion energy distributions in inductively coupled plasmas having a biased boundary electrode , 2012 .

[39]  Egorov,et al.  Measurement of plasma parameters in the stationary plasma thruster(SPT-100) plume and its effect on spacecraft components. , 1992 .

[40]  William A. Hargus,et al.  Background Pressure Effects on Ion Velocity Distribution Within a Medium-Power Hall Thruster , 2011 .

[41]  Dan M. Goebel,et al.  Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties , 2006 .

[42]  S. Zweben Principles of Plasma Diagnostics , 1990 .

[43]  A. D. Gallimore,et al.  Cathode Position and Orientation Effects on Cathode Coupling in a 6-kW , 2009 .

[44]  I. Hutchinson Principles of Plasma Diagnostics: Plasma particle flux , 2002 .

[45]  V. Demidov,et al.  Electric probes for plasmas: The link between theory and instrument , 2002 .

[46]  D. Goebel,et al.  Local Neutral Density and Plasma Parameter Measurements in a Hollow Cathode Plume , 2006 .

[47]  Hani Kamhawi,et al.  Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster , 2014 .

[48]  Kunning G. Xu,et al.  High-power, null-type, inverted pendulum thrust stand. , 2009, The Review of scientific instruments.

[49]  Lyon B. King Transport-property and mass spectral measurements in the plasma exhaust plume of a Hall-effect space propulsion system , 1998 .

[50]  K. Makowski,et al.  Spectral analysis of Hall-effect thruster plasma oscillations based on the empirical mode decomposition , 2005 .

[51]  M. Walker,et al.  Power Deposition into the Discharge Channel of a Hall Effect Thruster , 2014 .

[52]  Alec D. Gallimore,et al.  Characterizing Vacuum Facility Backpressure Effects on the Performance of a Hall Thruster , 2001 .

[53]  A. Semenkin,et al.  Development of Electric Propulsion Standards-Current Status and Further Activity . , 2001 .

[54]  John Steven Snyder,et al.  Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard , 2013 .

[55]  Rostislav Spektor,et al.  The Effects of Background Pressure on Hall Thruster Operation , 2012 .

[56]  Roger M. Myers,et al.  Hall thruster-cathode coupling , 1999 .

[57]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .