Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
暂无分享,去创建一个
Hans Fangohr | Xichao Zhang | G. P. Zhao | J. Ping Liu | W. X. Xia | J. Xia | F. J. Morvan | J. P. Liu | H. Fangohr | J. Xia | W. Xia | Xichao Zhang | G. Zhao | W. Xia | F. Morvan | G. Zhao
[1] G. Gaudin,et al. Current induced domain wall dynamics in the presence of spin orbit torques , 2013, 1310.3998.
[2] Lev Davidovich Landau,et al. ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .
[3] C. Pfleiderer,et al. Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.
[4] Wei Ning,et al. Highly stable skyrmion state in helimagnetic MnSi nanowires. , 2014, Nano letters.
[5] A. Dinescu,et al. Quantum optical lithography from 1 nm resolution to pattern transfer on silicon wafer , 2014 .
[6] A. Fert,et al. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.
[7] A. Thiele. Steady-State Motion of Magnetic Domains , 1973 .
[8] Y. Tokura,et al. Biskyrmion states and their current-driven motion in a layered manganite , 2014, Nature Communications.
[9] D. Apalkov,et al. Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion , 2012, 1210.3049.
[10] G. Finocchio,et al. A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.
[11] Robert S. Leiken,et al. A User’s Guide , 2011 .
[12] Y. Tokura,et al. Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.
[13] H. Ohno,et al. Current-induced torques in magnetic materials. , 2012, Nature materials.
[14] Y. Tokura,et al. Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.
[15] M J Donahue,et al. OOMMF User's Guide, Version 1.0 , 1999 .
[16] P. Böni,et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[17] Vincent Cros,et al. Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations , 2009 .
[18] Luc Thomas,et al. Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states , 2012, Nature Communications.
[19] Y. Tokura,et al. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. , 2013, Nano letters.
[20] Hajime Nakamura,et al. Current-Induced Domain Wall Motion in TbFeCo Wires With Perpendicular Magnetic Anisotropy , 2010, IEEE Transactions on Magnetics.
[21] S. Heinze,et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .
[22] T. Gilbert. A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .
[23] U. Rößler,et al. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? , 2011, 1102.2726.
[24] P. Böni,et al. Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.
[25] M. Mochizuki,et al. Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.
[26] Yan Zhou,et al. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry , 2014, Nature Communications.
[27] Yan Zhou,et al. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.
[28] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[29] Y. Dai,et al. Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction , 2013, 1308.0412.
[30] M. Stiles,et al. Boltzmann test of Slonczewski's theory of spin-transfer torque , 2004, cond-mat/0407569.
[31] Lloyd R. Harriott,et al. Limits of lithography , 2001, Proc. IEEE.
[32] Y. Tokura,et al. Observation of Skyrmions in a Multiferroic Material , 2012, Science.
[33] A. Fert,et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.
[34] D. Wu,et al. Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. , 2013, Physical review letters.
[35] Y. Tokura,et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.
[36] A. Saxena,et al. Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep , 2013, 1302.6205.
[37] R. Wiesendanger,et al. Writing and Deleting Single Magnetic Skyrmions , 2013, Science.
[38] J. Han,et al. Skyrmion Generation by Current , 2012, 1203.0638.
[39] R. Duine,et al. Spintronics: Skyrmions singled out. , 2013, Nature nanotechnology.
[40] A. Fert,et al. Skyrmions on the track. , 2013, Nature nanotechnology.
[41] S. Parkin,et al. Magnetic Domain-Wall Racetrack Memory , 2008, Science.
[42] S. Rohart,et al. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.
[43] S. Yi,et al. Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet , 2009, 0903.3272.
[44] U. Rößler,et al. Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.
[45] Y. Tokura,et al. Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.