Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

[1]  G. Gaudin,et al.  Current induced domain wall dynamics in the presence of spin orbit torques , 2013, 1310.3998.

[2]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[3]  C. Pfleiderer,et al.  Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.

[4]  Wei Ning,et al.  Highly stable skyrmion state in helimagnetic MnSi nanowires. , 2014, Nano letters.

[5]  A. Dinescu,et al.  Quantum optical lithography from 1 nm resolution to pattern transfer on silicon wafer , 2014 .

[6]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[7]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[8]  Y. Tokura,et al.  Biskyrmion states and their current-driven motion in a layered manganite , 2014, Nature Communications.

[9]  D. Apalkov,et al.  Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion , 2012, 1210.3049.

[10]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[11]  Robert S. Leiken,et al.  A User’s Guide , 2011 .

[12]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[13]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[14]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[15]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[16]  P. Böni,et al.  Skyrmion lattices in metallic and semiconducting B20 transition metal compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Vincent Cros,et al.  Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations , 2009 .

[18]  Luc Thomas,et al.  Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states , 2012, Nature Communications.

[19]  Y. Tokura,et al.  Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. , 2013, Nano letters.

[20]  Hajime Nakamura,et al.  Current-Induced Domain Wall Motion in TbFeCo Wires With Perpendicular Magnetic Anisotropy , 2010, IEEE Transactions on Magnetics.

[21]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[22]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[23]  U. Rößler,et al.  Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? , 2011, 1102.2726.

[24]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[25]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[26]  Yan Zhou,et al.  A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry , 2014, Nature Communications.

[27]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[28]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[29]  Y. Dai,et al.  Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction , 2013, 1308.0412.

[30]  M. Stiles,et al.  Boltzmann test of Slonczewski's theory of spin-transfer torque , 2004, cond-mat/0407569.

[31]  Lloyd R. Harriott,et al.  Limits of lithography , 2001, Proc. IEEE.

[32]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[33]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[34]  D. Wu,et al.  Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. , 2013, Physical review letters.

[35]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[36]  A. Saxena,et al.  Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep , 2013, 1302.6205.

[37]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[38]  J. Han,et al.  Skyrmion Generation by Current , 2012, 1203.0638.

[39]  R. Duine,et al.  Spintronics: Skyrmions singled out. , 2013, Nature nanotechnology.

[40]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[41]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[42]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[43]  S. Yi,et al.  Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet , 2009, 0903.3272.

[44]  U. Rößler,et al.  Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.

[45]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.