On the dynamics of five- and six-dimensional Lorenz models

In this paperwe report on generalized Lorenzmodels. Fiveand six-dimensional Lorenzmodels are investigated, which are obtained by considering respectively two and three additional Fouriermodes in addition to themodes included in the derivation of the classical three-dimensional Lorenzmodel. Parameter planes, bifurcation diagrams, and attractors in the phase-space are used, in order to investigate the influence of the additional Fouriermodes on solutions, when comparedwith the solutions for the classical Lorenzmodel. It is shown that for parametersσ and b kept fixed, a larger parameter r results for the onset of chaos infive-and six-dimensional Lorenzmodels. Also it is shown that the shape of bifurcation diagrams, periodic, and chaotic attractors is preserved in both generalized Lorenzmodels. Additionally, it is shown that hyperchaos is observed only in the six-dimensional Lorenzmodel, at least in the parameter ranges here investigated.

[1]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[2]  I. L. Caldas,et al.  Characterization in bi-parameter space of a non-ideal oscillator , 2015, 1507.06791.

[3]  Paulo C. Rech,et al.  Spiral periodic structure inside chaotic region in parameter-space of a Chua circuit , 2012, Int. J. Circuit Theory Appl..

[4]  Roberto Barrio,et al.  Behavior Patterns in multiparametric Dynamical Systems: Lorenz Model , 2012, Int. J. Bifurc. Chaos.

[5]  Holger R. Dullin,et al.  Extended Phase Diagram of the Lorenz Model , 2005, Int. J. Bifurc. Chaos.

[6]  Paulo C. Rech,et al.  Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions , 2012, Neural Networks.

[7]  Paulo C. Rech,et al.  Chaos, Periodicity, and Quasiperiodicity in a Radio-Physical Oscillator , 2017, Int. J. Bifurc. Chaos.

[8]  J. Gallas,et al.  Accumulation horizons and period adding in optically injected semiconductor lasers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Paulo C. Rech,et al.  Delimiting hyperchaotic regions in parameter planes of a 5D continuous-time dynamical system , 2014, Appl. Math. Comput..

[10]  Paulo C. Rech,et al.  Organization of the Dynamics in a Parameter Plane of a Tumor Growth Mathematical Model , 2014, Int. J. Bifurc. Chaos.

[11]  Paulo C. Rech Period-Adding Structures in the Parameter-Space of a Driven Josephson Junction , 2015, Int. J. Bifurc. Chaos.

[12]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[13]  Bo-Wen Shen,et al.  Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term , 2015 .

[14]  Barry Saltzman,et al.  Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .

[15]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .

[16]  Paulo C. Rech,et al.  Hyperchaotic states in the parameter-space , 2012, Appl. Math. Comput..

[17]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[18]  Paulo C. Rech,et al.  Organization of periodic structures in a damped-forced oscillator , 2014 .

[19]  Paulo C. Rech,et al.  Spiral periodic structures in a parameter plane of an ecological model , 2015, Appl. Math. Comput..

[20]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[21]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[22]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[23]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[24]  Paulo C. Rech,et al.  Multistability and organization of periodicity in a Van der Pol–Duffing oscillator , 2017 .

[25]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[26]  Paulo C. Rech,et al.  Dynamics of an erbium-doped fiber dual-ring laser , 2012 .

[27]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[28]  Bo-Wen Shen,et al.  Nonlinear Feedback in a Five-Dimensional Lorenz Model , 2014 .