Steiner's problem in graphs and its implications

A graph theoretic version of Steiner's problem in plane geometry is described. An approach for solving this problem, related to Melzak's solution to Steiner's problem, is presented. The problems of finding “shortest route” and “minimal spanning tree” in graphs become special cases of the Steiner's problem in graphs. It is shown that a solution to this problem also provides us with a solution to the problems of finding a minimum externally stable set and a maximum internally stable set in a graph.

[1]  R. Prim Shortest connection networks and some generalizations , 1957 .

[2]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[3]  S. Louis Hakimi,et al.  A Graph-Theoretic Approach to a Class of Integer-Programming Problems , 1969, Oper. Res..

[4]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[5]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[6]  Claude Berge,et al.  The Theory Of Graphs , 1962 .

[7]  P. Hertz ber Axiomensysteme fr beliebige Satzsysteme: I. Teil. Stze ersten Grades. (ber die Axiomensysteme von der kleinsten Satzzahl und den Begriff des idealen Elementes.) , 1922 .

[8]  J. Edmonds Covers and packings in a family of sets , 1962 .

[9]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[10]  E. Gilbert Minimum cost communication networks , 1967 .

[11]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[12]  Z. A. Melzak On the Problem of Steiner , 1961, Canadian Mathematical Bulletin.

[13]  G. Dantzig On the Shortest Route Through a Network , 1960 .

[14]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[15]  R. Courant,et al.  What Is Mathematics , 1943 .

[16]  H Frank,et al.  Maximum internally stable sets of a graph , 1969 .

[17]  R. Luce,et al.  Connectivity and generalized cliques in sociometric group structure , 1950, Psychometrika.

[18]  Melvin A. Breuer,et al.  Simplification of the Covering Problem with Application to Boolean Expressions , 1970, JACM.

[19]  P. Hertz Über Axiomensysteme für beliebige Satzsysteme , 1929 .

[20]  R. Bellman Quasi-linearization and upper and lower bounds for variational problems , 1962 .

[21]  S. S. Yau,et al.  Distance matrix of a graph and its realizability , 1965 .

[22]  S. Hakimi Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems , 1965 .