Sparse representation of vectors in lattices and semigroups
暂无分享,去创建一个
Iskander Aliev | Timm Oertel | Gennadiy Averkov | Jesús A. De Loera | J. D. Loera | G. Averkov | I. Aliev | Timm Oertel
[1] Peter J. Cameron,et al. A Graph Partition Problem , 2014, Am. Math. Mon..
[2] Сергей Владимирович Конягин,et al. О точном восстановлении разреженного вектора по линейным измерениям , 2013 .
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Benny Sudakov,et al. An algebraic perspective on integer sparse recovery , 2018, Appl. Math. Comput..
[5] László Lovász,et al. Matching structure and the matching lattice , 1987, J. Comb. Theory, Ser. B.
[6] E. Candès,et al. Error correction via linear programming , 2005, FOCS 2005.
[7] Gitta Kutyniok,et al. PROMP: A sparse recovery approach to lattice-valued signals , 2017, Applied and Computational Harmonic Analysis.
[8] Yonina C. Eldar,et al. Spatial Compressive Sensing for MIMO Radar , 2013, IEEE Transactions on Signal Processing.
[9] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[10] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[11] Iskander Aliev,et al. Sparse Solutions of Linear Diophantine Equations , 2016, SIAM J. Appl. Algebra Geom..
[12] Joseph Paat,et al. Sparsity of Integer Solutions in the Average Case , 2019, IPCO.
[13] Igor Pak,et al. Complexity of short Presburger arithmetic , 2017, STOC.
[14] Alfred Geroldinger,et al. Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .
[15] Holger Boche,et al. A Survey of Compressed Sensing , 2015 .
[16] Iskander Aliev,et al. Optimizing Sparsity over Lattices and Semigroups , 2019, Conference on Integer Programming and Combinatorial Optimization.
[17] Jesús A. De Loera,et al. The Support of Integer Optimal Solutions , 2017, SIAM J. Optim..
[18] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[19] Christoph Haase,et al. A survival guide to presburger arithmetic , 2018, SIGL.
[20] Kevin Woods,et al. PRESBURGER ARITHMETIC, RATIONAL GENERATING FUNCTIONS, AND QUASI-POLYNOMIALS , 2012, The Journal of Symbolic Logic.
[21] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[22] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[23] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[24] J. Vaaler. A geometric inequality with applications to linear forms , 1979 .
[25] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[26] S. Konyagin. On the Recovery of an Integer Vector from Linear Measurements , 2018, Mathematical Notes.
[27] The lattice of cycles of an undirected graph , 2020, 2002.01001.
[28] Friedrich Eisenbrand,et al. Carathéodory bounds for integer cones , 2006, Oper. Res. Lett..
[29] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[30] Short Presburger Arithmetic Is Hard , 2019, SIAM Journal on Computing.