Sparse representation of vectors in lattices and semigroups

We study the sparsity of the solutions to systems of linear Diophantine equations with and without non-negativity constraints. The sparsity of a solution vector is the number of its nonzero entries, which is referred to as the $$\ell _0$$ -norm of the vector. Our main results are new improved bounds on the minimal $$\ell _0$$ -norm of solutions to systems $$A\varvec{x}=\varvec{b}$$ , where $$A\in \mathbb {Z}^{m\times n}$$ , $${\varvec{b}}\in \mathbb {Z}^m$$ and $$\varvec{x}$$ is either a general integer vector (lattice case) or a non-negative integer vector (semigroup case). In certain cases, we give polynomial time algorithms for computing solutions with $$\ell _0$$ -norm satisfying the obtained bounds. We show that our bounds are tight. Our bounds can be seen as functions naturally generalizing the rank of a matrix over $$\mathbb {R}$$ , to other subdomains such as $$\mathbb {Z}$$ . We show that these new rank-like functions are all NP-hard to compute in general, but polynomial-time computable for fixed number of variables.

[1]  Peter J. Cameron,et al.  A Graph Partition Problem , 2014, Am. Math. Mon..

[2]  Сергей Владимирович Конягин,et al.  О точном восстановлении разреженного вектора по линейным измерениям , 2013 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Benny Sudakov,et al.  An algebraic perspective on integer sparse recovery , 2018, Appl. Math. Comput..

[5]  László Lovász,et al.  Matching structure and the matching lattice , 1987, J. Comb. Theory, Ser. B.

[6]  E. Candès,et al.  Error correction via linear programming , 2005, FOCS 2005.

[7]  Gitta Kutyniok,et al.  PROMP: A sparse recovery approach to lattice-valued signals , 2017, Applied and Computational Harmonic Analysis.

[8]  Yonina C. Eldar,et al.  Spatial Compressive Sensing for MIMO Radar , 2013, IEEE Transactions on Signal Processing.

[9]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[10]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Iskander Aliev,et al.  Sparse Solutions of Linear Diophantine Equations , 2016, SIAM J. Appl. Algebra Geom..

[12]  Joseph Paat,et al.  Sparsity of Integer Solutions in the Average Case , 2019, IPCO.

[13]  Igor Pak,et al.  Complexity of short Presburger arithmetic , 2017, STOC.

[14]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[15]  Holger Boche,et al.  A Survey of Compressed Sensing , 2015 .

[16]  Iskander Aliev,et al.  Optimizing Sparsity over Lattices and Semigroups , 2019, Conference on Integer Programming and Combinatorial Optimization.

[17]  Jesús A. De Loera,et al.  The Support of Integer Optimal Solutions , 2017, SIAM J. Optim..

[18]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[19]  Christoph Haase,et al.  A survival guide to presburger arithmetic , 2018, SIGL.

[20]  Kevin Woods,et al.  PRESBURGER ARITHMETIC, RATIONAL GENERATING FUNCTIONS, AND QUASI-POLYNOMIALS , 2012, The Journal of Symbolic Logic.

[21]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[22]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[23]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[24]  J. Vaaler A geometric inequality with applications to linear forms , 1979 .

[25]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[26]  S. Konyagin On the Recovery of an Integer Vector from Linear Measurements , 2018, Mathematical Notes.

[27]  The lattice of cycles of an undirected graph , 2020, 2002.01001.

[28]  Friedrich Eisenbrand,et al.  Carathéodory bounds for integer cones , 2006, Oper. Res. Lett..

[29]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[30]  Short Presburger Arithmetic Is Hard , 2019, SIAM Journal on Computing.