Setup of Order Conditions for Splitting Methods
暂无分享,去创建一个
Winfried Auzinger | Othmar Koch | Harald Hofstätter | Wolfgang Herfort | W. Auzinger | O. Koch | W. Herfort | H. Hofstätter
[1] Jacques Laskar,et al. New families of symplectic splitting methods for numerical integration in dynamical astronomy , 2012, 1208.0689.
[2] W. Auzinger,et al. Local error structures and order conditions in terms of Lie elements for exponential splitting schemes , 2014 .
[3] L. Bokut and E.S. Chibrikov. Lyndon-Shirshov words, Gro¨bner-Shirshov bases, and free Lie algebras , 2006 .
[4] Jean-Pierre Duval,et al. Generation of a section of conjugation classes and Lyndon word tree of limited length , 1988 .
[5] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[6] Winfried Auzinger,et al. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes , 2016, BIT Numerical Mathematics.
[7] Jean-Pierre Duval,et al. Génération d'une Section des Classes de Conjugaison et Arbre des Mots de Lyndon de Longueur Bornée , 1988, Theor. Comput. Sci..
[8] Colin B. Macdonald,et al. Spatially Partitioned Embedded Runge-Kutta Methods , 2013, SIAM J. Numer. Anal..
[9] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[10] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[11] Mechthild Thalhammer,et al. Defect-based local error estimators for high-order splitting methods involving three linear operators , 2015, Numerical Algorithms.