Assessment of strategies for evaluating extreme risks

The report begins by outlining several case studies with varying levels of data, examining the role for extreme event risk analysis. The case studies include BA’s analysis of fire blight and New Zealand apples, bank operational risk and several technical failures. The report then surveys recent developments in methods relevant to evaluating extreme risks and evaluates their properties. These include methods for fraud detection in banks, formal extreme value theory, Bayesian approaches, qualitative reasoning, and adversary and advocacy models. The document includes a supplementary report as an appendix, providing an overview of the quantification of bank operational risks.

[1]  I. Biederman,et al.  Sexing Day-Old Chicks : A Case Study and Expert Systems Analysis of a Difficult Perceptual-Learning Task , 1987 .

[2]  Craig R. Fox,et al.  The Role of Context in the Communication of Uncertain Beliefs , 1998 .

[3]  Y. Ben-Haim Info-Gap Decision Theory: Decisions Under Severe Uncertainty , 2006 .

[4]  Luis R. Pericchi,et al.  Anticipating catastrophes through extreme value modelling , 2003 .

[5]  John Haigh,et al.  Probabilistic Risk Analysis: Foundations and Methods , 2003 .

[6]  David J. Hand,et al.  Pattern Discovery and Detection: A Unified Statistical Methodology , 2004 .

[7]  Itamar Simonson,et al.  Deescalation Strategies: A Comparison of Techniques for Reducing Commitment to Losing Courses of Action , 1992 .

[8]  Myke Gluck,et al.  Visual Explanations: Images and Quantities, Evidence and Narrative , 1997, Inf. Process. Manag..

[9]  T. van der Zwet,et al.  The potential for spread of Erwinia amylovora and fire blight via commercial apple fruit; a critical review and risk assessment , 1998 .

[10]  Petros Dellaportas,et al.  Bayesian Analysis of Extreme Values by Mixture Modeling , 2003 .

[11]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[12]  S. Coles,et al.  Models and inference for uncertainty in extremal dependence , 2002 .

[13]  Kristina P. Sendova Operational Risk: Modeling Analytics , 2007, Technometrics.

[14]  Anna M. Bonner,et al.  Acknowledgments , 2019, The Neurodiagnostic journal.

[15]  Glenford J. Myers,et al.  The art of software testing (2. ed.) , 2004 .

[16]  J. Tankard The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA , 1996 .

[17]  Paul Embrechts,et al.  The Quantitative Modeling of Operational Risk: Between G-and-H and EVT , 2007, ASTIN Bulletin.

[18]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[19]  Elizabeth A. Olson,et al.  Eyewitness testimony. , 2003, Annual review of psychology.

[20]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[21]  P. Herr,et al.  Motivated Search: Effects of Choice Accountability, Issue Involvement, and Prior Knowledge on Information Acquisition and Use , 1999 .

[22]  Carl V Phillips,et al.  Quantifying errors without random sampling , 2003, BMC medical research methodology.

[23]  P. V. Shevchenko,et al.  The Structural Modelling of Operational Risk Via Bayesian Inference: Combining Loss Data with Expert Opinions , 2006, 0904.1067.

[24]  Claudia Klüppelberg,et al.  Operational VaR: a closed-form approximation , 2005 .

[25]  Edward B. Fowlkes,et al.  Risk analysis of the space shuttle: Pre-Challenger prediction of failure , 1989 .

[26]  Peter Tillers,et al.  If Wishes Were Horses: Discursive Comments on Attempts to Prevent Individuals from Being Unfairly Burdened by Their Reference Classes , 2005 .

[27]  Eric R. Ziegel Environmental Statistics: Methods and Applications , 2004, Technometrics.

[28]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[29]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[30]  J. Earman,et al.  Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory , 1994 .

[31]  W. P. Rogers,et al.  Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 1 , 1986 .

[32]  Rami Zwick,et al.  Comparing the calibration and coherence of numerical and verbal probability judgments , 1993 .

[33]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[34]  J. Frank Yates,et al.  Effects of procedural and outcome accountability on judgment quality , 1996 .

[35]  Leland Gerson Neuberg,et al.  Bayes or Bust?-A Critical Examination of Bayesian Confirmation Theory. , 1994 .

[36]  C. Marrison,et al.  The Fundamentals of Risk Management , 2002 .

[37]  S. Huffmon Expert Political Judgment: How Good Is It? How Can We Know? , 2006 .

[38]  Scott A. Sisson,et al.  A fully probabilistic approach to extreme rainfall modeling , 2003 .

[39]  Shilpa Ramamurthy,et al.  Operational Risk and Probabilistic Networks - An Application to Corporate Actions Processing , 2005 .

[40]  Marcelo Cruz Modeling, Measuring and Hedging Operational Risk , 2002 .

[41]  J. Franklin International compliance regimes: a public sector without restraints , 2007 .

[42]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[43]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[44]  S. Ferson,et al.  Is it a Crime to Belong to a Reference Class , 2001 .

[45]  Alan Hájek,et al.  The reference class problem is your problem too , 2007, Synthese.

[46]  Kabir K. Dutta,et al.  A Tale of Tails: An Empirical Analysis of Loss Distribution Models for Estimating Operational Risk Capital , 2006 .

[47]  J. L. Blair,et al.  Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation , 2001 .

[48]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[49]  M. Burgman Risks and Decisions for Conservation and Environmental Management: Experts, stakeholders and elicitation , 2005 .

[50]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[51]  Anthony O'Hagan,et al.  Eliciting expert beliefs in substantial practical applications , 1998 .

[52]  F. Marks,et al.  Rainfall characteristics of hurricane Mitch , 1999, Nature.

[53]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[54]  L. J. Cohen Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory , 1994 .

[55]  Berndt Brehmer,et al.  Does having to justify one's judgments change the nature of the judgment process? , 1983 .

[56]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[57]  Michael Lavine,et al.  Problems in Extrapolation Illustrated with Space Shuttle O-Ring Data , 1991 .

[58]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[59]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[60]  P. G. Caryl Psychology examiners re-examined: A 5-year perspective , 1999 .

[61]  Srinivasan Parthasarathy,et al.  Fast Distributed Outlier Detection in Mixed-Attribute Data Sets , 2006, Data Mining and Knowledge Discovery.

[62]  J. L. King,et al.  Operational Risk: Measurement and Modelling , 2001 .

[63]  Paul Embrechts,et al.  Extremes and Integrated Risk Management , 2000 .

[64]  Marco Moscadelli,et al.  The Modelling of Operational Risk: Experience with the Analysis of the Data Collected by the Basel Committee , 2004 .

[65]  Philip E. Tetlock,et al.  Accountability and complexity of thought. , 1983 .

[66]  Luis R. Pericchi,et al.  A case for a reassessment of the risks of extreme hydrological hazards in the Caribbean , 2006 .

[67]  Helen M. Regan,et al.  ROBUST DECISION‐MAKING UNDER SEVERE UNCERTAINTY FOR CONSERVATION MANAGEMENT , 2005 .

[68]  P. Tetlock,et al.  Accounting for the effects of accountability. , 1999, Psychological bulletin.

[69]  Michael J. Olson,et al.  Patterns of preference for numerical and verbal probabilities. , 1997 .

[70]  Diane Vaughan,et al.  The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA , 1996 .

[71]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[72]  P. George Benson,et al.  The effects of feedback and training on the performance of probability forecasters , 1992 .

[73]  Jonathan A. Tawn,et al.  Extreme values in the dock. , 2004 .

[74]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[75]  Paul Embrechts,et al.  QUANTIFYING REGULATORY CAPITAL FOR OPERATIONAL RISK , 2003 .

[76]  F. F. Lighthall,et al.  Launching the Space Shuttle Challenger: disciplinary deficiencies in the analysis of engineering data , 1991 .

[77]  J. Franklin Risk-driven global compliance regimes in banking and accounting: the new Law Merchant , 2005 .

[78]  Linda Tappin,et al.  Applications: Analyzing Data Relating to the Challenger Disaster. , 1994 .

[79]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[80]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[81]  F. Butzen,et al.  The Science of Conjecture: Evidence and Probability Before Pascal , 2002 .

[82]  Seth Bullock,et al.  Simple Heuristics That Make Us Smart , 1999 .

[83]  Kaplan,et al.  ‘Combining Probability Distributions from Experts in Risk Analysis’ , 2000, Risk analysis : an official publication of the Society for Risk Analysis.

[84]  S. G. Pierce,et al.  Info-Gap Decision Theory—Decisions under Severe Uncertainty, 2nd ed., Yakov Ben-Haim , 2008 .

[85]  Demetris Koutsoyiannis,et al.  Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: I. Recherche théorique , 2004 .

[86]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[87]  Anthony O'Hagan,et al.  Quantifying expert opinion in the UK water industry: an experimental study , 2000 .