Extremes and Recurrence in Dynamical Systems

This book provides a comprehensive introduction for the study of extreme events in the context of dynamical systems. The introduction provides a broad overview of the interdisciplinary research area of extreme events, underlining its relevance for mathematics, natural sciences, engineering, and social sciences. After exploring the basics of the classical theory of extreme events, the book presents a careful examination of how a dynamical system can serve as a generator of stochastic processes, and explores in detail the relationship between the hitting and return time statistics of a dynamical system and the possibility of constructing extreme value laws for given observables. Explicit derivation of extreme value laws are then provided for selected dynamical systems. The book then discusses how extreme events can be used as probes for inferring fundamental dynamical and geometrical properties of a dynamical system and for providing a novel point of view in problems of physical and geophysical relevance. A final summary of the main results is then presented along with a discussion of open research questions. Finally, an appendix with software in Matlab programming language allows the readers to develop further understanding of the presented concepts.

[1]  V. Guttal,et al.  Changing skewness: an early warning signal of regime shifts in ecosystems. , 2008, Ecology letters.

[2]  Sabine Himmel,et al.  Introduction To Measure And Probability , 2016 .

[3]  Qiqi Wang,et al.  Forward and adjoint sensitivity computation of chaotic dynamical systems , 2012, J. Comput. Phys..

[4]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[5]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[6]  P. Grassberger,et al.  Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .

[7]  F. Paccaut Statistics of return times for weighted maps of the interval , 2000 .

[8]  Valerio Lucarini,et al.  Mathematical and physical ideas for climate science , 2013, 1311.1190.

[9]  Boris Hasselblatt,et al.  A First Course in Dynamics: with a Panorama of Recent Developments , 2003 .

[10]  Z. Coelho ASYMPTOTIC LAWS FOR SYMBOLIC DYNAMICAL SYSTEMS , 2005 .

[11]  D. Henningson,et al.  Formation of turbulent patterns near the onset of transition in plane Couette flow , 2010, Journal of Fluid Mechanics.

[12]  P. Collet,et al.  Statistics of close visits to the indifferent fixed point of an interval map , 1993 .

[13]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[14]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[15]  Antonio Galves,et al.  Inequalities For Hitting Times In Mixing Dynamical Systems , 1997 .

[16]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[17]  P. Collet,et al.  ASYMPTOTIC DISTRIBUTION OF ENTRANCE TIMES FOR EXPANDING MAPS OF THE INTERVAL , 1995 .

[18]  C. Reick,et al.  Linear response of the Lorenz system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  J. Hawk,et al.  The power. , 1976, The Journal of practical nursing.

[20]  Michał Misiurewicz,et al.  STRANGE ATTRACTORS FOR THE LOZI MAPPINGS , 1980 .

[21]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[22]  D. Ruelle STATISTICAL MECHANICS ON A COMPACT SET WITH Z* ACTION SATISFYING EXPANSIVENESS AND SPECIFICATION , 2007 .

[23]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[24]  Antonio Galves,et al.  Inequalities for the occurrence times of rare events in mixing processes. The state of the art , 2000 .

[25]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[26]  Tailen Hsing,et al.  Calculating the extremal index for a class of stationary sequences , 1991, Advances in Applied Probability.

[27]  Pierre Collet,et al.  Statistics of closest return for some non-uniformly hyperbolic systems , 1999, Ergodic Theory and Dynamical Systems.

[28]  W. Schöner,et al.  Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series , 2001 .

[29]  Return time statistics via inducing , 2000, Ergodic Theory and Dynamical Systems.

[30]  Lai-Sang Young,et al.  Markov Extensions and Decay of Correlations for Certain Hénon Maps , 2000, Astérisque.

[31]  Valerio Lucarini,et al.  A statistical mechanical approach for the computation of the climatic response to general forcings , 2010, 1008.0340.

[32]  M. Abadi,et al.  Sharp errors for point-wise Poisson approximations in mixing processes , 2008 .

[33]  Julio M. Singer,et al.  Central Limit Theorems , 2011, International Encyclopedia of Statistical Science.

[34]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[35]  Malcolm R Leadbetter,et al.  On extreme values in stationary sequences , 1974 .

[36]  N. Haydn,et al.  Return-Time Statistics, Hitting-Time Statistics and Inducing , 2014 .

[37]  Jorge Milhazes Freitas,et al.  On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .

[38]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB , 2001 .

[39]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .

[40]  W. Tucker The Lorenz attractor exists , 1999 .

[41]  M. Süveges,et al.  Likelihood estimation of the extremal index , 2007 .

[42]  Badii,et al.  Renyi dimensions from local expansion rates. , 1987, Physical review. A, General physics.

[43]  P. Manneville,et al.  On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane Couette flow , 2010, 1010.2125.

[44]  D. Faranda,et al.  Mixing properties in the advection of passive tracers via recurrences and extreme value theory. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  The rate of convergence in law of the maximum of an exponential sample , 1979 .

[46]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[47]  J. B. Gao,et al.  Recurrence Time Statistics for Chaotic Systems and Their Applications , 1999 .

[48]  M. Lyubich Dynamics of quadratic polynomials, I–II , 1997 .

[49]  L. Young,et al.  Toward a theory of rank one attractors , 2008 .

[50]  Valerio Lucarini,et al.  On using extreme values to detect global stability thresholds in multi-stable systems: The case of transitional plane Couette flow , 2012, 1211.0510.

[51]  D. J. Albers,et al.  Structural stability and hyperbolicity violation in high-dimensional dynamical systems , 2004 .

[52]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[53]  R. Coutinho,et al.  Discrete time piecewise affine models of genetic regulatory networks , 2005, Journal of mathematical biology.

[54]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[55]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[56]  A. Meyroneinc,et al.  On the asymptotic properties of piecewise contracting maps , 2011, 1108.1501.

[57]  L. Young Bowen-Ruelle measures for certain piecewise hyperbolic maps , 1985 .

[58]  K. Wasilewska,et al.  Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems , 2014, 1402.2990.

[59]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[60]  H Kantz,et al.  Influence of the event magnitude on the predictability of an extreme event. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  R. M. Loynes,et al.  Extreme Values in Uniformly Mixing Stationary Stochastic Processes , 1965 .

[62]  P. Manneville,et al.  Local Versus Global Concepts in Hydrodynamic Stability Theory , 1997 .

[63]  Valerio Lucarini,et al.  Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach , 2012, Journal of Statistical Physics.

[64]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[65]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[66]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[67]  Malcolm R Leadbetter,et al.  On the exceedance point process for a stationary sequence , 1988 .

[68]  G. Eagleson Some Simple Conditions for Limit Theorems to Be Mixing , 1977 .

[69]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[70]  M. R. Leadbetter,et al.  On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions , 1989 .

[71]  Ginzburg–Landau description of laminar-turbulent oblique band formation in transitional plane Couette flow , 2011, 1102.2997.

[72]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[73]  R. Budelli,et al.  TOPOLOGICAL DYNAMICS OF GENERIC PIECEWISE CONTRACTIVE MAPS IN n DIMENSIONS , 2011 .

[74]  L. Barreira,et al.  Chapter 2 – Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics , 2006 .

[75]  Ben Parker Chaotic Billiards , 2006 .

[76]  P. Collet,et al.  Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems , 2010, Ergodic Theory and Dynamical Systems.

[77]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[78]  Henk A. Dijkstra,et al.  New nonlinear mechanisms of midlatitude atmospheric low-frequency variability , 2010 .

[79]  From temporal to spatiotemporal dynamics in transitional plane Couette flow. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  H. Kantz,et al.  Extreme Events in Nature and Society , 2006 .

[81]  P. Collet,et al.  Ergodic properties of the Lozi mappings , 1984 .

[82]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[83]  A. Hadi,et al.  Fitting the Generalized Pareto Distribution to Data , 1997 .

[84]  L. Tuckerman,et al.  Patterns and dynamics in transitional plane Couette flow , 2011 .

[85]  Marek R Rychlik,et al.  Bounded variation and invariant measures , 1983 .

[86]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[87]  Valerio Lucarini,et al.  Disentangling multi-level systems: averaging, correlations and memory , 2011, 1110.6113.

[88]  Oliver S. Kerr The Lorenz Attractor , 2003 .

[89]  P. Hall On the rate of convergence of normal extremes , 1979 .

[90]  Giorgio Turchetti,et al.  Analysis of Round Off Errors with Reversibility Test as a Dynamical indicator , 2012, Int. J. Bifurc. Chaos.

[91]  B. Saussol,et al.  Hitting and returning into rare events for all alpha-mixing processes , 2010, 1003.4856.

[92]  Viviane Baladi,et al.  Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps , 2010, 1003.5592.

[93]  O. Dauchot,et al.  Transition to Versus from Turbulence in Subcritical Couette Flows , 2005 .

[94]  Mario Nicodemi,et al.  Extreme Value Statistics , 2009, Encyclopedia of Complexity and Systems Science.

[95]  Andrew J. Majda,et al.  New Approximations and Tests of Linear Fluctuation-Response for Chaotic Nonlinear Forced-Dissipative Dynamical Systems , 2008, J. Nonlinear Sci..

[96]  S. Vaienti,et al.  The compound Poisson distribution and return times in dynamical systems , 2008, 0804.1032.

[97]  M. Cullen,et al.  Mathematics of the Fluid Earth , 2013 .

[98]  Michael N. Vrahatis,et al.  SMALLER ALIGNMENT INDEX ( SALI ) : DETECTING ORDER AND CHAOS IN CONSERVATIVE DYNAMICAL SYSTEMS , 2002 .

[99]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[100]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[101]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[102]  Teofilo F. Gonzalez,et al.  An Efficient Algorithm for the Kolmogorov-Smirnov and Lilliefors Tests , 1977, TOMS.

[103]  Alef Sterk Book review of "Extremes and Recurrence in Dynamical Systems" , 2017 .

[104]  T. Carletti,et al.  Numerical estimates of local dimension by waiting time and quantitative recurrence , 2006 .

[105]  Yongcheol Shin,et al.  The KPSS stationarity test as a unit root test , 1992 .

[106]  G Turchetti,et al.  Statistics of Poincaré recurrences for maps with integrable and ergodic components. , 2004, Chaos.

[107]  T. Shepherd Atmospheric circulation as a source of uncertainty in climate change projections , 2014 .

[108]  A counterexample concerning the extremal index , 1988 .

[109]  On Extreme Values in Stationary Random Fields , 1998 .

[110]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[111]  M. Kac On the notion of recurrence in discrete stochastic processes , 1947 .

[113]  Ana Cristina Moreira Freitas,et al.  Hitting time statistics and extreme value theory , 2008, 0804.2887.

[114]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[115]  Yakov Pesin,et al.  Dimension and product structure of hyperbolic measures , 1999 .

[116]  Andrzej J. Maciejewski,et al.  Global dynamics of planetary systems with the MEGNO criterion , 2001 .

[117]  B. Cessac,et al.  Linear response, susceptibility and resonances in chaotic toy models , 2006, nlin/0612026.

[118]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.