The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector.

We perform a systematic numerical study to characterize the tradeoff between the plasmonic enhancement and optical loss in periodically aligned, silicon nanowire (SiNW) arrays integrated with a silver back reflector (Ag BR). Optimizing the embedded depth of the wire bottoms into a silver reflector achieved a highly efficient SiNW solar cell. Compared to the SiNW solar cell employing a flat back reflector, the embedded depth of ~20 nm resulted in the relative increase of ~5% in ultimate solar cell efficiency.

[1]  Benedikt Bläsi,et al.  Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms , 2012 .

[2]  Bernd Witzigmann,et al.  Computational electromagnetics for nanowire solar cells , 2012 .

[3]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[4]  Vikram L. Dalal,et al.  A photonic-plasmonic structure for enhancing light absorption in thin film solar cells , 2011 .

[5]  C. Poulton,et al.  Modal analysis of enhanced absorption in silicon nanowire arrays. , 2011, Optics express.

[6]  Paul Steinvurzel,et al.  Multicolored vertical silicon nanowires. , 2011, Nano letters.

[7]  Xiaolin Zheng,et al.  Vertical transfer of uniform silicon nanowire arrays via crack formation. , 2011, Nano letters.

[8]  Zhongyi Guo,et al.  Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics. , 2011, Optics express.

[9]  Michelle L. Povinelli,et al.  The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays , 2010 .

[10]  R. Carius,et al.  Localized plasmonic losses at metal back contacts of thin-film silicon solar cells , 2010, Photonics Europe.

[11]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[12]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[13]  R. Biswas,et al.  Simulation and modelling of photonic and plasmonic crystal back reflectors for efficient light trapping , 2010 .

[14]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[15]  T. Shimizu,et al.  Bottom‐Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst , 2009 .

[16]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[17]  B. Witzigmann,et al.  Dispersion, wave propagation and efficiency analysis of nanowire solar cells. , 2009, Optics express.

[18]  Marko Topič,et al.  Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations , 2009 .

[19]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[20]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[21]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[22]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[23]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[24]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[25]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[26]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[27]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[28]  J. Springer,et al.  Absorption loss at nanorough silver back reflector of thin-film silicon solar cells , 2004 .

[29]  J. P. Woerdman,et al.  Fano-type interpretation of red shifts and red tails in hole array transmission spectra , 2003, physics/0401054.