Chryseobacterium frigidum sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense.

A yellow, Gram-reaction-negative, non-motile, aerobic bacterium, designated D07T, was isolated from a tundra soil near Ny-Ålesund, Svalbard archipelago, Norway (78° N). Growth occurred at 4-37 °C (optimum 28-30 °C) and at pH 6.0-9.0 (optimum pH 7.0-8.0). The strain produced flexirubin-type pigments. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D07T belonged to the genus Chryseobacterium in the family Flavobacteriaceae. The 16S rRNA gene sequence of this strain showed 93.83 and 93.31 % sequence similarity, respectively, to those of Chryseobacterium contaminans C26T and Chryseobacterium taklimakanense X-65T. Strain D07T contained anteiso-C15 : 0 (25.91 %), iso-C15 : 0 (16.05 %), iso-C16 : 0 3-OH (9.64 %), iso-C16 : 0 (9.42 %) and iso-C14 : 0 (7.36 %) as the predominant cellular fatty acids, MK-6 as the major respiratory quinone and phosphatidylethanolamine, five unknown aminolipids and three unknown lipids as the main polar lipids. The DNA G+C content was 49.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain D07T is considered to represent a novel species of the genus Chryseobacterium, for which the name Chryseobacterium frigidum sp. nov. is proposed. The type strain is D07T ( = CCTCC AB 2011160T = KCTC 42897T). Emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense are also provided.

[1]  P. Kämpfer,et al.  Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. , 2014, International journal of systematic and evolutionary microbiology.

[2]  A. Steigerwalt,et al.  DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis s , 2013, International journal of systematic and evolutionary microbiology.

[3]  Katherine A Smith,et al.  Chryseobacterium angstadtii sp. nov., isolated from a newt tank. , 2013, International journal of systematic and evolutionary microbiology.

[4]  J. Albertyn,et al.  Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. , 2013, International journal of systematic and evolutionary microbiology.

[5]  Y. Kim,et al.  Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field , 2013, Archives of Microbiology.

[6]  Shuangjiang Liu,et al.  Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. , 2013, International journal of systematic and evolutionary microbiology.

[7]  J. Chun,et al.  Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. , 2012, International journal of systematic and evolutionary microbiology.

[8]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[9]  K. Sridhar,et al.  Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. , 2010, International journal of systematic and evolutionary microbiology.

[10]  Jorge Fernández,et al.  Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. , 2009, International journal of systematic and evolutionary microbiology.

[11]  M. Vaneechoutte,et al.  Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. , 2009, International journal of systematic and evolutionary microbiology.

[12]  Fang Peng,et al.  Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. , 2009, International journal of systematic and evolutionary microbiology.

[13]  박병준 American Society for Microbiology (ASM) Meeting 참관기 , 2009 .

[14]  M. Halpern,et al.  Chryseobacterium bovis sp. nov., isolated from raw cow's milk. , 2008, International journal of systematic and evolutionary microbiology.

[15]  H. Oh,et al.  Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. , 2008, International journal of systematic and evolutionary microbiology.

[16]  E. Stackebrandt,et al.  Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. , 2008, International journal of systematic and evolutionary microbiology.

[17]  M. Vaneechoutte,et al.  Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. , 2007, International journal of systematic and evolutionary microbiology.

[18]  Myung-soo Park,et al.  Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. , 2006, International journal of systematic and evolutionary microbiology.

[19]  P. Vandamme,et al.  Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. , 2005, International journal of systematic and evolutionary microbiology.

[20]  C. Bizet,et al.  Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. , 2005, Systematic and applied microbiology.

[21]  A. Arun,et al.  Chryseobacterium taichungense sp. nov., isolated from contaminated soil. , 2005, International journal of systematic and evolutionary microbiology.

[22]  A. Yokota,et al.  Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. , 2004, International journal of systematic and evolutionary microbiology.

[23]  A. Yokota,et al.  Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. , 2003, The Journal of general and applied microbiology.

[24]  B. Hoste,et al.  Chryseobacterium joostei sp. nov., isolated from the dairy environment. , 2003, International Journal of Systematic and Evolutionary Microbiology.

[25]  Y. Nakagawa,et al.  Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. , 2002, International journal of systematic and evolutionary microbiology.

[26]  D. Moore,et al.  Preparation and Analysis of DNA , 2002 .

[27]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[28]  J. Bowman Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. , 2000, International journal of systematic and evolutionary microbiology.

[29]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[30]  A. Hensel,et al.  Discrimination of Members of the Family Pasteurellaceae Based on Polyamine Patterns , 1997 .

[31]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[32]  Peter Vandamme,et al.  New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen-nov, and Empedobacter nom-rev. , 1994 .

[33]  W. Whitman,et al.  Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography , 1989 .

[34]  G. Auling,et al.  Polyamine Pattern as a Chemotaxonomic Marker within the Proteobacteria , 1988 .

[35]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[36]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[37]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[38]  M. Collins,et al.  Distribution of menaquinones in actinomycetes and corynebacteria. , 1977, Journal of general microbiology.

[39]  J. Staneck,et al.  Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. , 1974, Applied microbiology.

[40]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[41]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.

[42]  N. Kovacs Identification of Pseudomonas pyocyanea by the Oxidase Reaction , 1956, Nature.

[43]  I. Gandhi,et al.  PERFORMANCE LIQUID CHROMATOGRAPHY METHOD FOR DETERMINATION OF STAVUDINE IN HUMAN PLASMA , 2012 .

[44]  K. Sridhar,et al.  Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. , 2010, International journal of systematic and evolutionary microbiology.

[45]  P. Kämpfer,et al.  Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. , 2008, International journal of systematic and evolutionary microbiology.

[46]  H. Bae,et al.  Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. , 2005, International journal of systematic and evolutionary microbiology.

[47]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[48]  Hans-Jürgen Busse,et al.  Chryseobacterium defluvii sp. nov., isolated from wastewater. , 2003, International journal of systematic and evolutionary microbiology.

[49]  Marguerita Sasser,et al.  Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Technical Note # 101 , 2001 .

[50]  D. Lane 16S/23S rRNA sequencing , 1991 .

[51]  B. Tindall Lipid composition of Halobacterium lacusprofundi , 1990 .

[52]  A. Steigerwalt,et al.  Flavobacterium gleum, a New Species Found in Human Clinical Specimens , 1984 .