Robust Optimization of Large-Scale Systems

Mathematical programming models with noisy, erroneous, or incomplete data are common in operations research applications. Difficulties with such data are typically dealt with reactively-through sensitivity analysis-or proactively-through stochastic programming formulations. In this paper, we characterize the desirable properties of a solution to models, when the problem data are described by a set of scenarios for their value, instead of using point estimates. A solution to an optimization model is defined as: solution robust if it remains "close" to optimal for all scenarios of the input data, and model robust if it remains "almost" feasible for all data scenarios. We then develop a general model formulation, called robust optimization RO, that explicitly incorporates the conflicting objectives of solution and model robustness. Robust optimization is compared with the traditional approaches of sensitivity analysis and stochastic linear programming. The classical diet problem illustrates the issues. Robust optimization models are then developed for several real-world applications: power capacity expansion; matrix balancing and image reconstruction; air-force airline scheduling; scenario immunization for financial planning; and minimum weight structural design. We also comment on the suitability of parallel and distributed computer architectures for the solution of robust optimization models.

[1]  John M. Mulvey,et al.  Balancing large social accounting matrices with nonlinear network programming , 1989, Networks.

[2]  Elizabeth R. Jessup,et al.  Parallel Factorization of Structured Matrices Arising in Stochastic Programming , 1994, SIAM J. Optim..

[3]  Tommy Elfving,et al.  An algorithm for maximum entropy image reconstruction from noisy data , 1989 .

[4]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[5]  Stavros A. Zenios,et al.  A Comparative Study of Algorithms for Matrix Balancing , 1990, Oper. Res..

[6]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[7]  Stavros A. Zenios,et al.  Data parallel computing for network-structured optimization problems , 1994, Comput. Optim. Appl..

[8]  A. Soyster,et al.  Electric Utility Capacity Expansion Planning with Uncertain Load Forecasts , 1982 .

[9]  George B. Dantzig,et al.  Decomposition techniques for multi-area generation and transmission planning under uncertainty: Final report , 1989 .

[10]  John M. Mulvey,et al.  Solving multistage stochastic networks: An application of scenario aggregation , 1991, Networks.

[11]  Genaro J. Gutierrez,et al.  A robustness approach to international sourcing , 1995, Ann. Oper. Res..

[12]  R. Wets Programming Under Uncertainty: The Equivalent Convex Program , 1966 .

[13]  H. Raiffa,et al.  Decisions with Multiple Objectives , 1993 .

[14]  J. Skilling,et al.  Maximum-entropy and Bayesian methods in inverse problems , 1985 .

[15]  R. Wets Stochastic Programs with Fixed Recourse: The Equivalent Deterministic Program , 1974 .

[16]  Laureano F. Escudero,et al.  Production planning via scenario modelling , 1993, Ann. Oper. Res..

[17]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[18]  Michael Bacharach,et al.  Biproportional matrices & input-output change , 1970 .

[19]  M. Bulmer The Cost of Subsistence , 1994 .

[20]  Stavros A. Zenios,et al.  A Massively Parallel Algorithm for Nonlinear Stochastic Network Problems , 1993, Oper. Res..

[21]  Gerd Infanger,et al.  Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs , 1991, Ann. Oper. Res..

[22]  J. Dupacová Stochastic programming with incomplete information:a surrey of results on postoptimization and sensitivity analysis , 1987 .

[23]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[24]  Roger J.-B. Wets,et al.  Stochastic programming, an Introduction , 1988 .

[25]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[26]  Christian Schaack,et al.  A classification of structured bond portfolio modeling techniques , 1990 .

[27]  Stavros A. Zenios,et al.  Mean-absolute deviation portfolio optimization for mortgage-backed securities , 1993, Ann. Oper. Res..

[28]  Scott A. Malcolm,et al.  Robust Optimization for Power Systems Capacity Expansion under Uncertainty , 1994 .

[29]  R. Wets Solving stochastic programs with simple recourse , 1983 .

[30]  András Prékopa,et al.  NETWORK PLANNING USING TWO-STAGE PROGRAMMING UNDER UNCERTAINTY , 1980 .

[31]  Michael Green Biproportional Matrices and Input‐Output Change , 1971 .

[32]  David D. Brengel,et al.  NONLINEAR ANALYSIS IN PROCESS DESIGN , 1991 .

[33]  W. Ziemba,et al.  The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming , 1994 .

[34]  B. WETSt,et al.  STOCHASTIC PROGRAMS WITH FIXED RECOURSE : THE EQUIVALENT DETERMINISTIC PROGRAM , 2022 .

[35]  John M. Mulvey,et al.  A diagonal quadratic approximation method for large scale linear programs , 1992, Oper. Res. Lett..

[36]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[37]  J. Ho Optimal design of multi-stage structures: a nested decomposition approach , 1975 .

[38]  J. Dupacová Stability and sensitivity-analysis for stochastic programming , 1991 .

[39]  Grace Wahba,et al.  A cross validated bayesian retrieval algorithm for nonlinear remote sensing experiments , 1985 .

[40]  A. Sanghvi,et al.  Investment Planning for Hydro-Thermal Power System Expansion: Stochastic Programming Employing the Dantzig-Wolfe Decomposition Principle , 1986, IEEE Power Engineering Review.

[41]  G. N. Minerbo,et al.  MENT: A maximum entropy algorithm for reconstructing a source from projection data , 1979 .

[42]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[43]  Hanif D. Sherali,et al.  Intertemporal Allocation of Capital Costs in Electric Utility Capacity Expansion Planning Under Uncertainty , 1984 .

[44]  George B. Dantzig,et al.  The Diet Problem , 1990 .

[45]  S. Zenios,et al.  A smooth penalty function algorithm for network-structured problems , 1995 .

[46]  E. Levitan,et al.  A Maximum a Posteriori Probability Expectation Maximization Algorithm for Image Reconstruction in Emission Tomography , 1987, IEEE Transactions on Medical Imaging.

[47]  Mustafa Ç. Pinar,et al.  Parallel Decomposition of Multicommodity Network Flows Using a Linear-Quadratic Penalty Algorithm , 1992, INFORMS J. Comput..

[48]  Yair Censor,et al.  Interval-constrained matrix balancing , 1991 .

[49]  Martin R. Holmer,et al.  A stochastic programming model for money management , 1995 .

[50]  Jati K. Sengupta,et al.  Robust Solutions in Stochastic Linear Programming , 1991 .

[51]  Michel Balinski,et al.  An Axiomatic Approach to Proportionality Between Matrices , 1989, Math. Oper. Res..

[52]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[53]  O. Morgenstern,et al.  On the Accuracy of Economic Observations. , 1950 .

[54]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[55]  John R. Birge,et al.  The value of the stochastic solution in stochastic linear programs with fixed recourse , 1982, Math. Program..

[56]  G. Dantzig,et al.  Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition , 1991 .

[57]  B. Rustem,et al.  Robust capacity planning under uncertainty , 1991 .