Initial–boundary problems for the vector modified Korteweg–de Vries equation via Fokas unified transform method

Abstract Initial–boundary problems for the vector modified Korteweg–de Vries equation on the half-line are investigated by Fokas unified transform method. Even though additional technical complications arise in the multi-component case compared with scalar ones, it is shown that the solution q ( x , t ) can be expressed in terms of the solution of a matrix Riemann–Hilbert problem. The Riemann–Hilbert problem involves a jump matrix, uniquely defined in terms of four matrix spectral functions denoted by { a ( λ ) , b ( λ ) , A ( λ ) , B ( λ ) } that depend on the initial data and all boundary values, respectively. A key role is played by the so-called global relation which involves the known and unknown boundary values. By analyzing the global relation, an effective characterization of the latter two spectral functions is presented.

[1]  A. S. Fokas,et al.  The nonlinear Schrödinger equation on the half-line , 2004 .

[2]  Xianguo Geng,et al.  Initial‐Boundary Value Problems for the Coupled Nonlinear Schrödinger Equation on the Half‐Line , 2015 .

[3]  Jian Xu,et al.  Initial-boundary value problem for integrable nonlinear evolution equations with $3\times 3$ Lax pairs on the interval , 2015, 1509.02617.

[4]  Engui Fan,et al.  The three-wave equation on the half-line , 2013, 1304.4339.

[5]  A. Fokas,et al.  The unified method: I. Nonlinearizable problems on the half-line , 2011, 1109.4935.

[6]  Athanassios S. Fokas,et al.  A Unified Approach To Boundary Value Problems , 2008 .

[7]  A. S. Fokas,et al.  An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons , 2008, 0812.1335.

[8]  M. Bartlett An Inverse Matrix Adjustment Arising in Discriminant Analysis , 1951 .

[9]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[10]  Jonatan Lenells Initial-boundary value problems for integrable evolution equations with 3×3 Lax pairs , 2012 .

[11]  M. Wadati,et al.  The Coupled Modified Korteweg-de Vries Equations , 1998, solv-int/9812003.

[12]  A. S. Fokas,et al.  The generalized Dirichlet‐to‐Neumann map for certain nonlinear evolution PDEs , 2005 .

[13]  Allan P. Fordy,et al.  Nonlinear Schrödinger equations and simple Lie algebras , 1983 .

[14]  V. Zakharov,et al.  Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II , 1979 .

[15]  Dmitry Shepelsky,et al.  Integrable Nonlinear Evolution Equations on a Finite Interval , 2006 .

[16]  N. Yajima,et al.  Formation and Interaction of Sonic-Langmuir Solitons Inverse Scattering Method , 1976 .

[17]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[18]  A. Fokas,et al.  The linearization of the initial-boundary value problem of the nonlinear Schro¨dinger equation , 1996 .

[19]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .

[20]  A. B. D. Monvel,et al.  Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition on the Half-Line , 2009 .

[21]  Jonatan Lenells,et al.  The Degasperis-Procesi equation on the half-line , 2012 .

[22]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[23]  A. Fokas,et al.  Explicit soliton asymptotics for the Korteweg–de Vries equation on the half-line , 2008, 0812.1579.

[24]  Athanassios S. Fokas,et al.  Integrable Nonlinear Evolution Equations on the Half-Line , 2002 .

[25]  A. S. Fokas,et al.  A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[27]  A. B. D. Monvel,et al.  THE mKdV EQUATION ON THE HALF-LINE , 2004, Journal of the Institute of Mathematics of Jussieu.

[28]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .