Magnetic tweezers in cell biology.

We discuss herein the theory as well as some design considerations of magnetic tweezers. This method of generating force on magnetic particles bound to biological entities is shown to have a number of advantages over other techniques: forces are exerted in noncontact mode, they can be large in magnitude (order of 10 nanonewtons), and adjustable in direction, static or oscillatory. One apparatus built in our laboratory is described in detail, along with examples of experimental applications and results.

[1]  Aliasger K Salem,et al.  Optimization of Yield in Magnetic Cell Separations Using Nickel Nanowires of Different Lengths , 2008, Biotechnology progress.

[2]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[3]  Michael P. Sheetz,et al.  Laser tweezers in cell biology , 1998 .

[4]  Karoly Jakab,et al.  Magnetic tweezers for intracellular applications , 2003 .

[5]  Michael P. Sheetz,et al.  Basic mechanism of three-dimensional collagen fibre transport by fibroblasts , 2005, Nature Cell Biology.

[6]  Jack J. Mock,et al.  Scanning probe electromagnetic tweezers , 2001 .

[7]  Grégory Giannone,et al.  Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. , 2006, Trends in cell biology.

[8]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.

[9]  Meier,et al.  Nucleation of Magnetization Reversal in Individual Nanosized Nickel Wires. , 1996, Physical review letters.

[10]  K. Jacobson,et al.  Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. , 1998, Biophysical journal.

[11]  Mara Prentiss,et al.  Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers , 2002 .

[12]  Viola Vogel,et al.  Shear‐dependent ‘stick‐and‐roll’ adhesion of type 1 fimbriated Escherichia coli , 2004, Molecular microbiology.

[13]  John E. Bonevich,et al.  Tuning the response of magnetic suspensions , 2003 .

[14]  M. Sheetz,et al.  Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves , 2004, Cell.

[15]  Francis Crick,et al.  The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental , 1950 .

[16]  E. Sackmann,et al.  Oscillatory magnetic bead rheometer for complex fluid microrheometry , 2001 .

[17]  Yasuhiro Sawada,et al.  Activation of a signaling cascade by cytoskeleton stretch. , 2004, Developmental cell.

[18]  Adam J. Engler,et al.  Myotubes differentiate optimally on substrates with tissue-like stiffness , 2004, The Journal of cell biology.

[19]  O. Thoumine,et al.  Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. , 1997, Journal of cell science.

[20]  Peter T C So,et al.  Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. , 2002, Biophysical journal.

[21]  Russell M. Taylor,et al.  Three-dimensional force microscope: A nanometric optical tracking and magnetic manipulation system for the biomedical sciences , 2005 .

[22]  Acto-myosin cytoskeleton dependent viscosity and shear-thinning behavior of the amoeba cytoplasm , 2005, European Biophysics Journal.

[23]  Joe Tien,et al.  Mechanotransduction at cell-matrix and cell-cell contacts. , 2004, Annual review of biomedical engineering.

[24]  Denis Wirtz,et al.  Magnetic tweezers for DNA micromanipulation , 2000 .

[25]  E. Sackmann,et al.  Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. , 1999, Biophysical journal.

[26]  J J Fredberg,et al.  Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. , 2000, Journal of applied physiology.

[27]  C. Rubin,et al.  Biomechanics and Mechanotransduction in Cells and Tissues High-frequency , low-magnitude vibrations suppress the number of blood vessels per muscle fiber in mouse soleus muscle , 2005 .

[28]  M. Sheetz,et al.  Force sensing and generation in cell phases: analyses of complex functions. , 2005, Journal of applied physiology.

[29]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[30]  R D Kamm,et al.  Force-induced focal adhesion translocation: effects of force amplitude and frequency. , 2004, American journal of physiology. Cell physiology.

[31]  N. Gavara,et al.  Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  E. Sackmann,et al.  Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. , 1994, Biophysical journal.

[33]  Donald E Ingber,et al.  Mechanical properties of individual focal adhesions probed with a magnetic microneedle. , 2004, Biochemical and biophysical research communications.

[34]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[35]  Gerald J. Meyer,et al.  Magnetic Alignment of Fluorescent Nanowires , 2001 .

[36]  Matthias Chiquet,et al.  How do fibroblasts translate mechanical signals into changes in extracellular matrix production? , 2003, Matrix biology : journal of the International Society for Matrix Biology.

[37]  R. Lal,et al.  Biological applications of atomic force microscopy. , 1994, The American journal of physiology.

[38]  Christopher S. Chen,et al.  Biological applications of multifunctional magnetic nanowires (invited) , 2003 .

[39]  J J Fredberg,et al.  Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. , 2001, Journal of applied physiology.

[40]  Ning Wang,et al.  Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. , 2004, American journal of physiology. Cell physiology.

[41]  Michael P. Sheetz,et al.  Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin , 2003, Nature.

[42]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[43]  Jie Yan,et al.  Near-field-magnetic-tweezer manipulation of single DNA molecules. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  M. Sheetz,et al.  Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. , 2006, Molecular biology of the cell.

[45]  Arnab Majumdar,et al.  Viscoelastic and dynamic nonlinear properties of airway smooth muscle tissue: roles of mechanical force and the cytoskeleton. , 2006, American journal of physiology. Lung cellular and molecular physiology.

[46]  M. Sheetz,et al.  Local force and geometry sensing regulate cell functions , 2006, Nature Reviews Molecular Cell Biology.

[47]  J. Simeon,et al.  Creep function of a single living cell. , 2005, Biophysical journal.

[48]  Donald E. Ingber,et al.  Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels , 2006, Journal of Cell Science.

[49]  M. Sheetz,et al.  Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. , 2004, Biophysical journal.

[50]  P. Janmey,et al.  Biomechanics and Mechanotransduction in Cells and Tissues Cell type-specific response to growth on soft materials , 2005 .

[51]  J. Bacri,et al.  Deformation of intracellular endosomes under a magnetic field , 2003, European Biophysics Journal.

[52]  Michael P. Sheetz,et al.  Rigidity Sensing at the Leading Edge through αvβ3 Integrins and RPTPα , 2006 .

[53]  G. Meyer,et al.  Selective Functionalization of Two-Component Magnetic Nanowires , 2003 .

[54]  M. Sheetz,et al.  A micromachined device provides a new bend on fibroblast traction forces. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[56]  Bernard Yurke,et al.  A magnetic manipulator for studying local rheology and micromechanical properties of biological systems , 1996 .

[57]  Christopher S. Chen,et al.  Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. , 2005, Lab on a chip.

[58]  J. Ansermet,et al.  Giant magnetoresistance of nanowires of multilayers , 1994 .

[59]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[60]  P A Valberg,et al.  Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method , 1985, The Journal of cell biology.