Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition

[1]  F. Martín,et al.  Electrodeposited Nanostructured α-Fe2O3 Photoanodes for Solar Water Splitting: Effect of Surface Co-Modification on Photoelectrochemical Performance , 2011 .

[2]  P. Boolchand,et al.  Cr- and Ce-Doped Ferrite Catalysts for the High Temperature Water−Gas Shift Reaction: TPR and Mossbauer Spectroscopic Study† , 2011 .

[3]  Toshiyuki Sato,et al.  Continuous Hydrothermal Synthesis of Fe2O3 Nanoparticles Using a Central Collision-Type Micromixer for Rapid and Homogeneous Nucleation at 673 K and 30 MPa , 2010 .

[4]  Bin Xu,et al.  Functional hybrid materials based on carbon nanotubes and metal oxides , 2010 .

[5]  Md. Faruk Hossain,et al.  Gas phase photocatalytic activity of ultrathin Pt layer coated on alpha-Fe2O3 films under visible light illumination. , 2010, Environmental science & technology.

[6]  N. Swami,et al.  Photoelectrochemical Stability of Electrodeposited Cu2O Films , 2010 .

[7]  D. Matson,et al.  Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. , 2010, Environmental science & technology.

[8]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[9]  Huicong Liu,et al.  A three-dimensional electrode for photoelectrochemical cell: TiO2 coated ITO mesoporous film , 2010 .

[10]  F. Iskandar,et al.  Nanoparticle formation in spray pyrolysis under low-pressure conditions , 2010 .

[11]  Aron Walsh,et al.  Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory , 2010 .

[12]  A. Stiegman,et al.  Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. , 2009, ACS Applied Materials and Interfaces.

[13]  Liaochuan Jiang,et al.  Photoelectrochemical Study on Charge Transfer Properties of ZnO Nanowires Promoted by Carbon Nanotubes , 2009 .

[14]  K. Sun,et al.  A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[15]  Fu-Ren F. Fan,et al.  Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties , 2009 .

[16]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[17]  M. Takano,et al.  Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. , 2008, Journal of the American Chemical Society.

[18]  Arnold J. Forman,et al.  Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting , 2008 .

[19]  M. Aronniemi,et al.  Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition , 2008 .

[20]  Eric W. McFarland,et al.  Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting , 2008 .

[21]  R. Krol,et al.  Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films: influence of Si Doping and SnO2 Interfacial Layer , 2008 .

[22]  Philip J. Martin,et al.  Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition , 2008 .

[23]  Piers R. F. Barnes,et al.  Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si , 2007 .

[24]  R. Córdova,et al.  An Electrochemical Deposition Route for Obtaining α-Fe2O3 Thin Films II. EQCM Study and Semiconductor Properties , 2007 .

[25]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[26]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[27]  Jinghua Guo,et al.  One‐Dimensional Quantum‐Confinement Effect in α‐Fe2O3 Ultrafine Nanorod Arrays , 2005 .

[28]  Michael Grätzel,et al.  Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis , 2005 .

[29]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[30]  W. Ingler,et al.  Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes in water splitting , 2005 .

[31]  R. Černý,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. , 2005, The journal of physical chemistry. B.

[32]  Michel Dupuis,et al.  Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3 , 2005 .

[33]  R. Rocheleau,et al.  Low-temperature reactively sputtered iron oxide for thin film devices , 2004 .

[34]  A. Akl Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis , 2004 .

[35]  A. Kudo,et al.  Photocatalytic activities of noble metal ion doped SrTiO3under visible light irradiation , 2004 .

[36]  S. Piazza,et al.  Photoelectrochemical investigation of passive layers formed on Fe in different electrolytic solutions , 2004 .

[37]  Akira Watanabe,et al.  Photoanodic properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles , 2003 .

[38]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[39]  A. Hagfeldt,et al.  Aqueous photoelectrochemistry of hematite nanorod array , 2002 .

[40]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[41]  P. Maruthamuthu,et al.  Photogeneration of hydrogen using visible light with undoped/doped α-Fe2O3 in the presence of methyl viologen , 1995 .

[42]  G. Somorjai,et al.  The photoelectrochemistry of niobium doped α-Fe2O3 , 1988 .

[43]  N. Ikemoto,et al.  Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. , 1980, The Journal of biological chemistry.

[44]  G. Hills,et al.  The mercury-aqueous solution interface in the presence of hexafluorophosphate and fluoride ions , 1971 .

[45]  E. McFarland,et al.  Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production. , 2005, Journal of combinatorial chemistry.