Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.

We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

[1]  H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields , 2007 .

[2]  M. Povinelli,et al.  Enhancing Optical Switching with Coherent Control , 2010 .

[3]  Hideo Mabuchi,et al.  Low-lying bifurcations in cavity quantum electrodynamics , 2006 .

[4]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[5]  Theodor W. Hänsch,et al.  ATOMIC MICROMANIPULATION WITH MAGNETIC SURFACE TRAPS , 1999 .

[6]  Alexander L. Gaeta,et al.  Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing , 2013 .

[7]  강희정,et al.  17 , 1995, The Hatak Witches.

[8]  H. Kimble,et al.  Intrinsic Dynamical Instability in Optical Bistability with Two-Level Atoms , 1984 .

[9]  Eden Figueroa,et al.  Electromagnetically induced transparency with single atoms in a cavity , 2010, Nature.

[10]  P. Drummond,et al.  Optical bistability in a radially varying mode , 1981 .

[11]  Drummond,et al.  Absorptive optical bistability in two-state atoms. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[13]  Charles Santori,et al.  Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. , 2009, Optics express.

[14]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[15]  Ségard,et al.  Self-pulsing in intrinsic optical bistability with two-level molecules. , 1988, Physical review letters.

[16]  H. J. Kimble,et al.  Strong interactions of single atoms and photons near a dielectric boundary , 2010, 1011.0740.

[17]  A. Bloom Quantum Electronics , 1972, Nature.

[18]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[19]  R. Bonifacio,et al.  Theory of optical bistability (A) , 1978 .

[20]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[21]  W. Hänsel,et al.  Magnetic conveyor belt for transporting and merging trapped atom clouds. , 2001, Physical review letters.

[22]  C. Hamley,et al.  Cavity QED with optically transported atoms , 2003, quant-ph/0309052.

[23]  Min Xiao,et al.  Chaos in an electromagnetically induced transparent medium inside an optical cavity. , 2005, Physical review letters.

[24]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[25]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[26]  Kenju Otsuka Nonlinear Dynamics in Optical Complex Systems , 2000 .

[27]  H. Mabuchi,et al.  Real-time detection of individual atoms falling through a high-finesse optical cavity. , 1996, Optics letters.

[28]  Hideo Mabuchi,et al.  Remnants of semiclassical bistability in the few-photon regime of cavity QED. , 2010, Optics express.

[29]  J. Gilman,et al.  Nanotechnology , 2001 .

[30]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Paul Mandel,et al.  Theoretical Problems in Cavity Nonlinear Optics , 1997 .

[33]  Thompson,et al.  Optical bistability and photon statistics in cavity quantum electrodynamics. , 1991, Physical review letters.

[34]  S. Deleglise,et al.  Optomechanically Induced Transparency , 2011 .

[35]  Andrew G. Glen,et al.  APPL , 2001 .

[36]  Masaya Notomi,et al.  Ultralow-power all-optical RAM based on nanocavities , 2012, Nature Photonics.

[37]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[38]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[39]  D. Stamper-Kurn,et al.  Cavity nonlinear optics at low photon numbers from collective atomic motion. , 2007, Physical review letters.

[40]  H. Mabuchi Derivation of Maxwell-Bloch-type equations by projection of quantum models , 2008, 0803.2887.

[41]  Yurii A. Vlasov,et al.  Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G , 2012, IEEE Communications Magazine.

[42]  H. Carmichael Statistical Methods in Quantum Optics 2 , 2008 .