Geometric characterization for the least Lagrangian action ofn-body problems
暂无分享,去创建一个
[1] Jürgen Moser,et al. Lectures on Celestial Mechanics , 1971 .
[3] S. Terracini,et al. Collisionless periodic solutions to some three-body problems , 1992 .
[4] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[5] Y. Long,et al. Geometric Characterization for Variational Minimization Solutions of the 3-Body Problem with Fixed Energy , 2000 .
[6] V. C. Zelati. Periodic solutions for N-body type problems , 1990 .
[7] V. Arnold,et al. Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .
[8] A. Ambrosetti,et al. Periodic solutions of singular Lagrangian systems , 1993 .
[9] A. Chenciner,et al. Minima de l'intgrale d'action et quilibres relatifs de n corps , 1998 .
[10] W. Gordon. A Minimizing Property of Keplerian Orbits , 1977 .
[11] F. Diacu. Near-Collision Dynamics for Particle Systems with Quasihomogeneous Potentials , 1996 .
[12] Aurel Wintner,et al. The Analytical Foundations of Celestial Mechanics , 2014 .
[13] V. Arnold,et al. Dynamical Systems III , 1987 .