User Manual of the Deft incompressible flow solver

[1]  H. Fernholz Boundary Layer Theory , 2001 .

[2]  Guus Segal Programmers Guide of the ISNaS incompressible flow solver , 2000 .

[3]  Cornelis Vuik,et al.  Parallel implementation of a multiblock method with approximate subdomain solution , 1999 .

[4]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[5]  P. Wesseling,et al.  Higher-Order Flux-Limiting Schemes for the Finite Volume Computation of Incompressible Flow , 1998 .

[6]  Colocated discretization of the navier-stokes equations on highly non-smooth grids , 1998 .

[7]  Erik Brakkee,et al.  The Influence of Interface Conditions on Convergence of Krylov-Schwarz Domain Decomposition for the Advection-Diffusion Equation , 1997 .

[8]  Marcel Zijlema,et al.  ON THE CONSTRUCTION OF A THIRD‐ORDER ACCURATE MONOTONE CONVECTION SCHEME WITH APPLICATION TO TURBULENT FLOWS IN GENERAL DOMAINS , 1996 .

[9]  M. Zijlema Computational modeling of turbulent flow in general domains , 1996 .

[10]  Cornelis Vuik,et al.  FAST ITERATIVE SOLVERS FOR THE DISCRETIZED INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[11]  Pieter Wesseling,et al.  Domain decomposition for the incompressible Navier-Stokes equations: solving subdomain problems accu , 1995 .

[12]  Erik Brakkee,et al.  A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations , 1995, Simul. Pract. Theory.

[13]  C. Vuik New insights in GMRES-like methods with variable preconditioners , 1995 .

[14]  George Papadakis,et al.  A locally modified second order upwind scheme for convection terms discretization , 1995 .

[15]  A. Pascau,et al.  A well‐behaved scheme to model strong convection in a general transport equation , 1995 .

[16]  Henk A. Van der Vorst,et al.  Hybrid Bi-Conjugate Gradient Methods For CFD Problems , 1995 .

[17]  Fue-Sang Lien,et al.  Upstream monotonic interpolation for scalar transport with application to complex turbulent flows , 1994 .

[18]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[19]  Alain Dervieux,et al.  Construction of TVD-like Artificial Viscosities on Two-Dimensional Arbitrary FEM Grids , 1993 .

[20]  M. Zijlema Finite volume discretization of the k-epsilon turbulence model in general coordinates , 1993 .

[21]  Barry Koren,et al.  A robust upwind discretization method for advection, diffusion and source terms , 1993 .

[22]  D. Wilcox Turbulence modeling for CFD , 1993 .

[23]  M. Kato The modeling of turbulent flow around stationary and vibrating square cylinders , 1993 .

[24]  The solution of a one-dimensional Stefan problem , 1993 .

[25]  D. R. Fokkema,et al.  BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .

[26]  Cornelis Vuik,et al.  Some historical notes about the Stefan problem , 1993 .

[27]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[28]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[29]  Termination criteria for GMRES-like methods to solve the discretized incompressible Navier-Stokes equations , 1992 .

[30]  C. Vuik Solution of the discretized incompressible Navier‐Stokes equations with the GMRES method , 1993 .

[31]  W. Rodi,et al.  A low dispersion and bounded convection scheme , 1991 .

[32]  J. Zhu A low-diffusive and oscillation-free convection scheme , 1991 .

[33]  P. Wesseling,et al.  Finite volume discretization of the incompressible Navier-Stokes equations innon-smooth boundary-fitted coordinate in two dimensions , 1991 .

[34]  Discretization of the incompressible Navier-Stokes equations in general coordinates using contravariant velocity components , 1991 .

[35]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[36]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[37]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[38]  P. Gaskell,et al.  Curvature‐compensated convective transport: SMART, A new boundedness‐ preserving transport algorithm , 1988 .

[39]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[40]  Yen-Sen Chen,et al.  Computation of turbulent flows using an extended k-epsilon turbulence closure model , 1987 .

[41]  C. G. Speziale On nonlinear K-l and K-ε models of turbulence , 1987, Journal of Fluid Mechanics.

[42]  Akira Yoshizawa,et al.  Turbulent channel and Couette flows using an anisotropic k-epsilon model , 1987 .

[43]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[44]  S. Spekreijse Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws , 1986 .

[45]  V. C. Patel,et al.  Turbulence models for near-wall and low Reynolds number flows - A review , 1985 .

[46]  P. C. Robinson,et al.  A numerical study of various algorithms related to the preconditioned conjugate gradient method , 1985 .

[47]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[48]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[49]  Jacques Periaux,et al.  Analysis of laminar flow over a backward facing step; Proceedings of the Workshop, Bievres, France, January 18, 19, 1983 , 1984 .

[50]  G. de Vahl Davis,et al.  Natural convection in a square cavity: A comparison exercise , 1983 .

[51]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[52]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[53]  I. Demirdzic,et al.  A finite volume method for computation of fluid flow in complex geometries , 1982 .

[54]  Klaus Bremhorst,et al.  A Modified Form of the k-ε Model for Predicting Wall Turbulence , 1981 .

[55]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[56]  D. P. Giddens,et al.  Turbulence measurements in a constricted tube , 1980, Journal of Fluid Mechanics.

[57]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[58]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[59]  D. Spalding A novel finite difference formulation for differential expressions involving both first and second derivatives , 1972 .

[60]  B. Launder,et al.  Mathematical Models of turbulence , 1972 .