Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites

Horizontal gene transfer has emerged as a crucial driving force for the evolution of eukaryotes. This also includes Plasmodium falciparum and related economically and clinically relevant apicomplexan parasites, whose rather small genomes have been shaped not only by natural selection in different host populations but also by horizontal gene transfer following endosymbiosis. However, there is rather little reliable data on horizontal gene transfer between animal hosts or bacteria and apicomplexan parasites. Here we show that apicomplexan homologues of peroxiredoxin 5 (Prx5) have a prokaryotic ancestry and therefore represent a special subclass of Prx5 isoforms in eukaryotes. Using two different immunobiochemical approaches, we found that the P. falciparum Prx5 homologue is dually localized to the parasite plastid and cytosol. This dual localization is reflected by a modular Plasmodium-specific gene architecture consisting of two exons. Despite the plastid localization, our phylogenetic analyses contradict an acquisition by secondary endosymbiosis and support a gene fusion event following a horizontal prokaryote-to-eukaryote gene transfer in early apicomplexans. The results provide unexpected insights into the evolution of apicomplexan parasites as well as the molecular evolution of peroxiredoxins, an important family of ubiquitous, usually highly concentrated thiol-dependent hydroperoxidases that exert functions as detoxifying enzymes, redox sensors and chaperones.

[1]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[2]  G. V. van Dooren,et al.  The algal past and parasite present of the apicoplast. , 2013, Annual review of microbiology.

[3]  M. Schnölzer,et al.  Plasmodium falciparum antioxidant protein as a model enzyme for a special class of glutaredoxin/glutathione-dependent peroxiredoxins. , 2013, Biochimica et biophysica acta.

[4]  Marcel Deponte Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. , 2013, Biochimica et biophysica acta.

[5]  Sapna Sharma,et al.  Expression of Cytosolic Peroxiredoxins in Plasmodium berghei Ookinetes Is Regulated by Environmental Factors in the Mosquito Bloodmeal , 2013, PLoS pathogens.

[6]  S. Kishore,et al.  Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans , 2013, BMC Evolutionary Biology.

[7]  Matthew W. Brown,et al.  The Revised Classification of Eukaryotes , 2012, The Journal of eukaryotic microbiology.

[8]  P. Karplus,et al.  Peroxiredoxins in parasites. , 2012, Antioxidants & redox signaling.

[9]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[10]  Larry Simpson,et al.  Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries , 2012, Biological chemistry.

[11]  Andrew J. Millar,et al.  Peroxiredoxins are conserved markers of circadian rhythms , 2012, Nature.

[12]  J. Lukeš,et al.  Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. , 2012, Protist.

[13]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[14]  Paul M Southworth,et al.  A mass spectrometric strategy for absolute quantification of Plasmodium falciparum proteins of low abundance , 2011, Malaria Journal.

[15]  R. Brigelius-Flohé,et al.  Basic principles and emerging concepts in the redox control of transcription factors. , 2011, Antioxidants & redox signaling.

[16]  K. Dietz Peroxiredoxins in plants and cyanobacteria. , 2011, Antioxidants & redox signaling.

[17]  P Andrew Karplus,et al.  Structure-based Insights into the Catalytic Power and Conformational Dexterity of Peroxiredoxins , 2022 .

[18]  S. Rhee,et al.  Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. , 2011, Antioxidants & redox signaling.

[19]  W. Doolittle,et al.  Lateral gene transfer , 2011, Current Biology.

[20]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[21]  H. Stunnenberg,et al.  A Genome-wide Chromatin-associated Nuclear Peroxiredoxin from the Malaria Parasite Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[22]  Julie C. Dunning Hotopp,et al.  Horizontal gene transfer between bacteria and animals. , 2011, Trends in genetics : TIG.

[23]  S. Rahlfs,et al.  Compartmentation of Redox Metabolism in Malaria Parasites , 2010, PLoS pathogens.

[24]  Ramón Doallo,et al.  ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution , 2010, Euro-Par Workshops.

[25]  A. Horák,et al.  A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids , 2010, Proceedings of the National Academy of Sciences.

[26]  Marcel Deponte,et al.  Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases , 2010, Molecular microbiology.

[27]  Joaquín Dopazo,et al.  ETE: a python Environment for Tree Exploration , 2010, BMC Bioinformatics.

[28]  J. Yates,et al.  The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification , 2009, Proceedings of the National Academy of Sciences.

[29]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[30]  G. Schneider,et al.  An Unusual ERAD-Like Complex Is Targeted to the Apicoplast of Plasmodium falciparum , 2009, Eukaryotic Cell.

[31]  J. Palmer,et al.  Horizontal gene transfer in eukaryotic evolution , 2008, Nature Reviews Genetics.

[32]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[33]  Christopher J. Tonkin,et al.  Evolution of malaria parasite plastid targeting sequences , 2008, Proceedings of the National Academy of Sciences.

[34]  Klaas Vandepoele,et al.  Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species , 2008, Proceedings of the National Academy of Sciences.

[35]  T. J. Templeton Whole-genome natural histories of apicomplexan surface proteins. , 2007, Trends in parasitology.

[36]  S. Rahlfs,et al.  Peroxiredoxin systems of protozoal parasites. , 2007, Sub-cellular biochemistry.

[37]  C. Nickel,et al.  Thioredoxin networks in the malarial parasite Plasmodium falciparum. , 2006, Antioxidants & redox signaling.

[38]  M. Madan Babu,et al.  Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains , 2005, Nucleic acids research.

[39]  Jessica C Kissinger,et al.  Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum , 2004, Genome Biology.

[40]  F. Legeai,et al.  Predotar: A tool for rapidly screening proteomes for N‐terminal targeting sequences , 2004, Proteomics.

[41]  Sang Yeol Lee,et al.  Two Enzymes in One Two Yeast Peroxiredoxins Display Oxidative Stress-Dependent Switching from a Peroxidase to a Molecular Chaperone Function , 2004, Cell.

[42]  Jessica C Kissinger,et al.  A first glimpse into the pattern and scale of gene transfer in Apicomplexa. , 2004, International journal for parasitology.

[43]  Jessica C Kissinger,et al.  Gene transfer in the evolution of parasite nucleotide biosynthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Schneider,et al.  Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. , 2003, Molecular and biochemical parasitology.

[45]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[46]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[47]  J. Logsdon,et al.  Genetic complementation in apicomplexan parasites , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Satoru Miyano,et al.  Extensive feature detection of N-terminal protein sorting signals , 2002, Bioinform..

[49]  J Zuegge,et al.  Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. , 2001, Gene.

[50]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[51]  T. Wellems,et al.  Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. , 2001, Nucleic acids research.

[52]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[53]  T. Theander,et al.  Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry. , 1999, Cytometry.

[54]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  F. Ayala,et al.  Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[57]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.