SexualGA: Gender-Specific Selection for Genetic Algorithms

Selection for reproduction in the context of Genetic Algorithms uses only one selection scheme to select parent individuals. When considering the model of sexual selection in the area of population genetics it gets obvious that the process of choosing mating partners in natural populations is different for male and female individuals. In this paper the authors introduce a new selection paradigm for Genetic Algorithms (SexualGA) based upon the concepts of male vigor and female choice of population genetics which provides the possibility to use two different selection schemes simultaneously within one algorithm. By using this new concept it is possible to simulate sexual selection in natural populations more precisely. Furthermore, SexualGA also offers far more flexibility concerning the adaptivity of selection pressure enabling the GA user to tune the algorithm more accurately.

[1]  Stephan M. Winkler,et al.  Identifying Nonlinear Model Structures Using Genetic Programming Techniques , 2007 .

[2]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[3]  Michael Affenzeller,et al.  Traps and Dangers when Modelling Problems for Genetic Algorithms , 2004 .

[4]  D. Hartl,et al.  Principles of population genetics , 1981 .

[5]  Michael Affenzeller,et al.  Segregative Genetic Algorithms (SEGA): A hybrid superstructure upwards compatible to genetic algorithms for retarding premature convergence , 2001, Int. J. Comput. Syst. Signals.

[6]  Michael Affenzeller,et al.  SASEGASA: An Evolutionary Algorithm for Retarding Premature Convergence by Self-adaptive Selection Pressure Steering , 2003, IWANN.

[7]  Michael Affenzeller,et al.  HeuristicLab: A Generic and Extensible Optimization Environment , 2005 .

[8]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[9]  Aliza Main,et al.  The travelling salesman problem , 1996 .

[10]  Michael Affenzeller,et al.  SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results , 2004, J. Heuristics.

[11]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[12]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[13]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[14]  Yukiko Yoshida,et al.  A Diploid Genetic Algorithm for Preserving Population Diversity - pseudo-Meiosis GA , 1994, PPSN.

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[16]  M. Affenzeller,et al.  Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms , 2005 .

[17]  N. Pierce Origin of Species , 1914, Nature.

[18]  Lance D. Chambers Practical handbook of genetic algorithms , 1995 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  S. Griffis EDITOR , 1997, Journal of Navigation.

[21]  Stephan M. Winkler,et al.  New methods for the identification of nonlinear model structures based upon genetic programming techniques , 2005 .

[22]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[23]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[24]  Marco Tomassini,et al.  a Survey of Genetic Algorithms , 1995 .

[25]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[26]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[27]  D. Dumitrescu,et al.  Evolutionary computation , 2000 .