Identification of potential binding pocket on viral oncoprotein HPV16 E6: a promising anti-cancer target for small molecule drug discovery

[1]  G. Colombo,et al.  Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. , 2018, Journal of medicinal chemistry.

[2]  Rutao Cui,et al.  O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis , 2016, Proceedings of the National Academy of Sciences.

[3]  D. Yoon,et al.  Cudrania tricuspidata Stem Extract Induces Apoptosis via the Extrinsic Pathway in SiHa Cervical Cancer Cells , 2016, PloS one.

[4]  E. Androphy,et al.  Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors , 2016, PloS one.

[5]  P. Duerksen-Hughes,et al.  Flavonol and imidazole derivatives block HPV16 E6 activities and reactivate apoptotic pathways in HPV+ cells , 2016, Cell Death and Disease.

[6]  L. Legnani,et al.  Cone Calix[4]arenes with Orientable Glycosylthioureido Groups at the Upper Rim: An In-Depth Analysis of Their Symmetry Properties. , 2015, Journal of Organic Chemistry.

[7]  Lingaraja Jena,et al.  In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18 , 2015, Genomics & Informatics.

[8]  Lingaraja Jena,et al.  Virtual Screening for Potential Inhibitors of High-Risk Human Papillomavirus 16 E6 Protein , 2015, Interdisciplinary Sciences: Computational Life Sciences.

[9]  Mamta Baunthiyal,et al.  Computer aided screening of natural compounds targeting the E6 protein of HPV using molecular docking , 2015, Bioinformation.

[10]  Y. Jacob,et al.  Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a High-Affinity Bivalent Ligand** , 2015, Angewandte Chemie.

[11]  P. Jemth,et al.  Design of a PDZbody, a bivalent binder of the E6 protein from human papillomavirus , 2015, Scientific Reports.

[12]  D. Yoon,et al.  Luteolin induces intrinsic apoptosis via inhibition of E6/E7 oncogenes and activation of extrinsic and intrinsic signaling pathways in HPV-18-associated cells. , 2014, Oncology reports.

[13]  Lingaraja Jena,et al.  Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis , 2014, Genomics & informatics.

[14]  D. Fera,et al.  Identification and Characterization of Small Molecule Human Papillomavirus E6 Inhibitors , 2014, ACS chemical biology.

[15]  E. Androphy,et al.  Structure Based Identification and Characterization of Flavonoids That Disrupt Human Papillomavirus-16 E6 Function , 2013, PloS one.

[16]  Miranda Thomas,et al.  HPV E6 oncoprotein as a potential therapeutic target in HPV related cancers , 2013, Expert opinion on therapeutic targets.

[17]  D. Yoon,et al.  Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells , 2013, Cell Biology and Toxicology.

[18]  O. Ohlenschläger,et al.  Structural Insights into a Wildtype Domain of the Oncoprotein E6 and Its Interaction with a PDZ Domain , 2013, PloS one.

[19]  R. Stote,et al.  Structural Basis for Hijacking of Cellular LxxLL Motifs by Papillomavirus E6 Oncoproteins , 2013, Science.

[20]  Sandy S. Tungteakkhun,et al.  Small molecule inhibitors of the HPV16-E6 interaction with caspase 8. , 2012, Bioorganic & medicinal chemistry letters.

[21]  E. D. de Vries,et al.  Anticancer drugs aimed at E6 and E7 activity in HPV-positive cervical cancer. , 2012, Current cancer drug targets.

[22]  Aurélien Grosdidier,et al.  Fast docking using the CHARMM force field with EADock DSS , 2011, J. Comput. Chem..

[23]  J. Archambault,et al.  Small Molecule Inhibitors of Human Papillomavirus Protein - Protein Interactions , 2011, The open virology journal.

[24]  Aurélien Grosdidier,et al.  SwissDock, a protein-small molecule docking web service based on EADock DSS , 2011, Nucleic Acids Res..

[25]  Cary A Moody,et al.  Human papillomavirus oncoproteins: pathways to transformation , 2010, Nature Reviews Cancer.

[26]  M. Tommasino,et al.  The biological properties of E6 and E7 oncoproteins from human papillomaviruses , 2010, Virus Genes.

[27]  E. Weeber,et al.  Chemical Manipulation of Hsp70 ATPase Activity Regulates Tau Stability , 2009, The Journal of Neuroscience.

[28]  Sandy S. Tungteakkhun,et al.  The Interaction between Human Papillomavirus Type 16 and FADD Is Mediated by a Novel E6 Binding Domain , 2008, Journal of Virology.

[29]  J. Kopitz,et al.  Calix[n]arene‐Based Glycoclusters: Bioactivity of Thiourea‐Linked Galactose/Lactose Moieties as Inhibitors of Binding of Medically Relevant Lectins to a Glycoprotein and Cell‐Surface Glycoconjugates and Selectivity among Human Adhesion/Growth‐Regulatory Galectins , 2008, Chembiochem : a European journal of chemical biology.

[30]  Sandy S. Tungteakkhun,et al.  Cellular binding partners of the human papillomavirus E6 protein , 2008, Archives of Virology.

[31]  S. Franceschi,et al.  Human papillomavirus type distribution in invasive cervical cancer and high‐grade cervical lesions: A meta‐analysis update , 2007, International journal of cancer.

[32]  E. Androphy,et al.  Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. , 2006, Antiviral research.

[33]  Xavier Castellsagué,et al.  Chapter 1: HPV in the etiology of human cancer. , 2006, Vaccine.

[34]  P. Duerksen-Hughes,et al.  Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis , 2006, Cell Death and Differentiation.

[35]  E. Yim,et al.  The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. , 2005, Cancer research and treatment : official journal of Korean Cancer Association.

[36]  D. Yoon,et al.  Inhibitory effect of jaceosidin isolated from Artemisiaargyi on the function of E6 and E7 oncoproteins of HPV 16. , 2005, Journal of ethnopharmacology.

[37]  Olaf Prien,et al.  Target‐Family‐Oriented Focused Libraries for Kinases—Conceptual Design Aspects and Commercial Availability , 2005, Chembiochem : a European journal of chemical biology.

[38]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[39]  F. X. Bosch,et al.  Epidemiologic classification of human papillomavirus types associated with cervical cancer. , 2003, The New England journal of medicine.

[40]  Helen Song,et al.  The Human Papillomavirus 16 E6 Protein Binds to Tumor Necrosis Factor (TNF) R1 and Protects Cells from TNF-induced Apoptosis* , 2002, The Journal of Biological Chemistry.

[41]  J. Peto,et al.  Human papillomavirus is a necessary cause of invasive cervical cancer worldwide , 1999, The Journal of pathology.

[42]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[43]  H. zur Hausen,et al.  Papillomaviruses in the causation of human cancers - a brief historical account. , 2009, Virology.

[44]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[45]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[46]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.