Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

[1]  F. Barnabé-Heider,et al.  Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time , 2016, EBioMedicine.

[2]  D. Centonze,et al.  Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes , 2016, The Journal of Neuroscience.

[3]  Andrew L Croxford,et al.  Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation , 2015, Front. Immunol..

[4]  I. Bechmann,et al.  CD11c‐positive cells from brain, spleen, lung, and liver exhibit site‐specific immune phenotypes and plastically adapt to new environments , 2015, Glia.

[5]  J. Kessler,et al.  β1-Integrin Alters Ependymal Stem Cell BMP Receptor Localization and Attenuates Astrogliosis after Spinal Cord Injury , 2015, The Journal of Neuroscience.

[6]  Sakae Tanaka,et al.  Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[7]  A. Álvarez-Buylla,et al.  Adult neural stem cells stake their ground , 2014, Trends in Neurosciences.

[8]  Michael G Fehlings,et al.  Global prevalence and incidence of traumatic spinal cord injury , 2014, Clinical epidemiology.

[9]  J. Frisén,et al.  Resident Neural Stem Cells Restrict Tissue Damage and Neuronal Loss After Spinal Cord Injury in Mice , 2013, Science.

[10]  G. Comi,et al.  iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF , 2013, Nature Communications.

[11]  D. Centonze,et al.  Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. , 2012, Brain : a journal of neurology.

[12]  J. García-Verdugo,et al.  Biciliated ependymal cell proliferation contributes to spinal cord growth , 2012, The Journal of comparative neurology.

[13]  O. Lindvall,et al.  Cross-talk between neural stem cells and immune cells: the key to better brain repair? , 2012, Nature Neuroscience.

[14]  N. Rooijen,et al.  Differential Detection and Distribution of Microglial and Hematogenous Macrophage Populations in the Injured Spinal Cord of lys-EGFP-ki Transgenic Mice , 2012, Journal of neuropathology and experimental neurology.

[15]  J. García-Verdugo,et al.  Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. , 2012, Brain : a journal of neurology.

[16]  M. Schwartz,et al.  The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair , 2011, PloS one.

[17]  Michal Schwartz,et al.  Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. , 2011, Physiological reviews.

[18]  K. Meletis,et al.  Origin of new glial cells in intact and injured adult spinal cord. , 2010, Cell stem cell.

[19]  K. Fernandes,et al.  Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord , 2009, Neuroscience.

[20]  R. Benezra,et al.  High levels of Id1 expression define B1 type adult neural stem cells. , 2009, Cell Stem Cell.

[21]  Jessica K. Alexander,et al.  Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord , 2009, The Journal of Neuroscience.

[22]  Steffen Jung,et al.  Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice , 2009, PLoS medicine.

[23]  J. García-Verdugo,et al.  Immune Regulatory Neural Stem/Precursor Cells Protect from Central Nervous System Autoimmunity by Restraining Dendritic Cell Function , 2009, PloS one.

[24]  A. Anderson,et al.  Deficiency in Complement C1q Improves Histological and Functional Locomotor Outcome after Spinal Cord Injury , 2008, The Journal of Neuroscience.

[25]  Ryoichiro Kageyama,et al.  Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain , 2008, Nature Neuroscience.

[26]  J. García-Verdugo,et al.  Persistent inflammation alters the function of the endogenous brain stem cell compartment , 2008, Brain : a journal of neurology.

[27]  J. Frisén,et al.  Stem cells for spinal cord repair. , 2008, Cell stem cell.

[28]  M. Carlén,et al.  Spinal Cord Injury Reveals Multilineage Differentiation of Ependymal Cells , 2008, PLoS biology.

[29]  R. Ransohoff,et al.  Isolation of murine microglial cells for RNA analysis or flow cytometry , 2006, Nature Protocols.

[30]  P. Horner,et al.  Fate of endogenous stem/progenitor cells following spinal cord injury , 2006, The Journal of comparative neurology.

[31]  Aileen J Anderson,et al.  Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. , 2006, Journal of neurotrauma.

[32]  Yaniv Ziv,et al.  Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells , 2006, Molecular and Cellular Neuroscience.

[33]  G. Comi,et al.  Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism , 2005, Nature.

[34]  G. Martino,et al.  The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders , 2005, Journal of the Neurological Sciences.

[35]  Angelo L. Vescovi,et al.  Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis , 2003, Nature.

[36]  A. Bradley,et al.  A targeted X‐linked CMV‐Cre line , 2002, Genesis.

[37]  P. Popovich,et al.  Bone Marrow Chimeric Rats Reveal the Unique Distribution of Resident and Recruited Macrophages in the Contused Rat Spinal Cord , 2001, Journal of neuropathology and experimental neurology.

[38]  H. Okano,et al.  Nestin-EGFP Transgenic Mice: Visualization of the Self-Renewal and Multipotency of CNS Stem Cells , 2001, Molecular and Cellular Neuroscience.

[39]  Jonas Frisén,et al.  Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System , 1999, Cell.

[40]  J. García-Verdugo,et al.  Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain , 1997, The Journal of Neuroscience.

[41]  B. Stokes,et al.  Cellular inflammatory response after spinal cord injury in sprague‐dawley and lewis rats , 1997, The Journal of comparative neurology.

[42]  S. Weiss,et al.  Is there a neural stem cell in the mammalian forebrain? , 1996, Trends in Neurosciences.

[43]  R. McKay,et al.  Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors , 1994, Neuron.

[44]  K. Frederiksen,et al.  Proliferation and differentiation of rat neuroepithelial precursor cells in vivo , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  A. Álvarez-Buylla,et al.  The subventricular zone: source of neuronal precursors for brain repair. , 2000, Progress in brain research.

[46]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.