Adiabatic quantum optimization in the presence of discrete noise: Reducing the problem dimensionality

Adiabatic quantum optimization is a procedure to solve a vast class of optimization problems by slowly changing the Hamiltonian of a quantum system. The evolution time necessary for the algorithm to be successful scales inversely with the minimum energy gap encountered during the dynamics. Unfortunately, the direct calculation of the gap is strongly limited by the exponential growth in the dimensionality of the Hilbert space associated to the quantum system. Although many special-purpose methods have been devised to reduce the effective dimensionality, they are strongly limited to particular classes of problems with evident symmetries. Moreover, little is known about the computational power of adiabatic quantum optimizers in real-world conditions. Here, we propose and implement a general purposes reduction method that does not rely on any explicit symmetry and which requires, under certain general conditions, only a polynomial amount of classical resources. Thanks to this method, we are able to analyze the performance of "non-ideal" quantum adiabatic optimizers to solve the well-known Grover problem, namely the search of target entries in an unsorted database, in the presence of discrete local defects. In this case, we show that adiabatic quantum optimization, even if affected by random noise, is still potentially faster than any classical algorithm.

[1]  Vicky Choi,et al.  Different adiabatic quantum optimization algorithms for the NP-complete exact cover problem , 2010, Proceedings of the National Academy of Sciences.

[2]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[3]  A. Elgart,et al.  On the efficiency of Hamiltonian-based quantum computation for low-rank matrices , 2010, 1004.4911.

[4]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[5]  Edward Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .

[6]  N. Cerf,et al.  Noise resistance of adiabatic quantum computation using random matrix theory , 2004, quant-ph/0409127.

[7]  Andrew D. King,et al.  Algorithm engineering for a quantum annealing platform , 2014, ArXiv.

[8]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[9]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[10]  K. B. Whaley,et al.  Effects of a random noisy oracle on search algorithm complexity , 2003, quant-ph/0304138.

[11]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  P. W. Anderson,et al.  Local moments and localized States. , 1978, Science.

[13]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[14]  Ben Reichardt,et al.  The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.

[15]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[17]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[18]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[19]  P. Love,et al.  Thermally assisted adiabatic quantum computation. , 2006, Physical review letters.

[20]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[21]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[22]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms with Different Paths , 2002, quant-ph/0208135.

[23]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[24]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[25]  Cedric Yen-Yu Lin,et al.  Different Strategies for Optimization Using the Quantum Adiabatic Algorithm , 2014, 1401.7320.

[26]  Lorenzo Stella,et al.  Optimization through quantum annealing: theory and some applications , 2006 .

[27]  Michele Mosca,et al.  Limitations of some simple adiabatic quantum algorithms , 2007 .

[28]  A. Messiah Quantum Mechanics , 1961 .

[29]  Zhaohui Wei,et al.  A modified quantum adiabatic evolution for the Deutsch–Jozsa problem , 2006 .

[30]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[31]  Massimo Ostilli,et al.  The exact ground state for a class of matrix Hamiltonian models: quantum phase transition and universality in the thermodynamic limit , 2006 .

[32]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[33]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[34]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms versus Simulated Annealing , 2002, quant-ph/0201031.

[35]  Ryan Babbush,et al.  Construction of Energy Functions for Lattice Heteropolymer Models: A Case Study in Constraint Satisfaction Programming and Adiabatic Quantum Optimization , 2012, 1211.3422.

[36]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[37]  M. Tiersch,et al.  Non-markovian decoherence in the adiabatic quantum search algorithm , 2006, quant-ph/0608123.

[38]  Alán Aspuru-Guzik,et al.  Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics , 2013, Proceedings of the National Academy of Sciences.

[39]  Itay Hen,et al.  Continuous-time quantum algorithms for unstructured problems , 2013, 1302.7256.

[40]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[41]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[42]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[43]  I. Hen Excitation gap from optimized correlation functions in quantum Monte Carlo simulations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Bruce J. Berne,et al.  Global Optimization : Quantum Thermal Annealing with Path Integral Monte Carlo , 1999 .

[45]  Saurya Das,et al.  Adiabatic quantum computation and Deutsch's algorithm , 2001, quant-ph/0111032.

[46]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[47]  Ronald Dickman,et al.  Complete high-precision entropic sampling. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  F. Krzakala,et al.  Quantum Annealing of Hard Problems , 2009, 0910.5644.

[49]  F. Krzakala,et al.  Simple glass models and their quantum annealing. , 2008, Physical Review Letters.

[50]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[51]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[52]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[53]  Lee,et al.  New Monte Carlo algorithm: Entropic sampling. , 1993, Physical review letters.

[54]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[55]  Daniel Nagaj,et al.  Quantum speedup by quantum annealing. , 2012, Physical review letters.

[56]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[57]  Martin Horvat,et al.  Exponential complexity of an adiabatic algorithm for an NP-complete problem , 2006 .

[58]  A. Young,et al.  Solving the Graph Isomorphism Problem with a Quantum Annealer , 2012, 1207.1712.

[59]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[60]  T. Hogg Adiabatic Quantum Computing for Random Satisfiability Problems , 2002, quant-ph/0206059.

[61]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[62]  Daniel A. Lidar,et al.  Decoherence in adiabatic quantum computation , 2015, 1503.08767.