A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b

We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

[1]  Richard A. Davis,et al.  Time Series: Theory and Methods (2Nd Edn) , 1993 .

[2]  J. Scargle Studies in astronomical time series analysis. I - Modeling random processes in the time domain , 1981 .

[3]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[4]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[5]  David Charbonneau,et al.  TrES-1: The Transiting Planet of a Bright K0 V Star , 2004 .

[6]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[7]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[8]  J. E. Stys,et al.  The XO Project: Searching for Transiting Extrasolar Planet Candidates , 2005, astro-ph/0505560.

[9]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[10]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[11]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[12]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[13]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[14]  L. Koesterke,et al.  A DETECTION OF Hα IN AN EXOPLANETARY EXOSPHERE , 2012, 1203.4484.

[15]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[16]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[17]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[18]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[19]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[20]  A.-M. Lagrange,et al.  Using the Sun to estimate Earth-like planets detection capabilities II. Impact of plages , 2010, 1001.1638.

[21]  D. Ehrenreich,et al.  Transit spectrophotometry of the exoplanet HD 189733b - II. New Spitzer observations at 3.6 μm , 2010, 1008.2481.

[22]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[23]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[24]  Detection of sodium absorption in WASP-17b with Magellan , 2012, 1207.6895.

[25]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[26]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[27]  Richard W. Pogge,et al.  The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large‐Area Synoptic Surveys , 2007, 0704.0460.

[28]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[29]  P. Maxted,et al.  Transmission spectroscopy of the sodium doublet in WASP-17b with the VLT , 2010, Proceedings of the International Astronomical Union.

[30]  T. Ando Predictive Bayesian Model Selection , 2011 .

[31]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[32]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[33]  Nicolas Crouzet,et al.  TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS , 2012, 1210.5275.

[34]  T. Marsh THE EXTRACTION OF HIGHLY DISTORTED SPECTRA , 1989 .

[35]  Sara Seager,et al.  THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE , 2011, 1109.0582.

[36]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[37]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[38]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[39]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[40]  A. Cameron,et al.  Accurate spectroscopic parameters of WASP planet host stars , 2012, 1210.5931.

[41]  Chris Koen,et al.  The analysis of indexed astronomical time series – I. Basic methods , 1993 .

[42]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[43]  Ian D. Howarth,et al.  On stellar limb darkening and exoplanetary transits , 2011, 1106.4659.

[44]  Andrew Szentgyorgyi,et al.  GROUND-BASED TRANSIT SPECTROSCOPY OF THE HOT-JUPITER WASP-19b IN THE NEAR-INFRARED , 2013, 1303.1094.

[45]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[46]  P. Conroy,et al.  HATSouth: A Global Network of Fully Automated Identical Wide-Field Telescopes , 2012, 1206.1391.

[47]  D. Ehrenreich,et al.  GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy† , 2012, 1208.4982.

[48]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[49]  S. Mahadevan,et al.  Probing potassium in the atmosphere of HD 80606b with tunable filter transit spectrophotometry from the Gran Telescopio Canarias , 2010, 1008.4800.

[50]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[51]  A. Pál Properties of analytic transit light-curve models , 2008 .

[52]  Stephen R. Kane,et al.  TERMS PHOTOMETRY OF KNOWN TRANSITING EXOPLANETS , 2011, 1108.2308.