Facile synthesis of hierarchical ZnS@FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors

[1]  Li Qiu,et al.  Phosphine-Based Porous Organic Polymer/rGO Composite Anode and α-MnO2 Nanowire Cathode Cooperatively Enabling High-Voltage Aqueous Asymmetric Supercapacitors , 2021 .

[2]  Wen Lu,et al.  One-pot Synthesis of 2D SnS2 Nanorods with High Energy Density and Long Term Stability for High-Performance Hybrid Supercapacitor , 2021 .

[3]  N. Kim,et al.  0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review , 2021 .

[4]  Fenghua Zheng,et al.  FeSe2@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. , 2020, ACS nano.

[5]  Zhanhu Guo,et al.  Binder-free CuS/ZnS/sodium alginate/rGO nanocomposite hydrogel electrodes for enhanced performance supercapacitors. , 2020, International journal of biological macromolecules.

[6]  M. Ko,et al.  3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors , 2020 .

[7]  K. Makgopa,et al.  Nanostructured Carbon-Based Electrode Materials for Supercapacitor Applications , 2020 .

[8]  R. Boukherroub,et al.  Self-template synthesis of ZnS/Ni3S2 as advanced electrode material for hybrid supercapacitors , 2019 .

[9]  Xin Gao,et al.  Simultaneous electrochemical determination of levodopa and uric acid based on ZnS nanoparticles/3D graphene foam electrode , 2019, Microchemical Journal.

[10]  Jun Lu,et al.  Graphene Wrapped FeSe2 Nano‐Microspheres with High Pseudocapacitive Contribution for Enhanced Na‐Ion Storage , 2019, Advanced Energy Materials.

[11]  Anyuan Cao,et al.  Reticulate Dual‐Nanowire Aerogel for Multifunctional Applications: a High‐Performance Strain Sensor and a High Areal Capacity Rechargeable Anode , 2019, Advanced Functional Materials.

[12]  K. Kang,et al.  Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO2 Anodes in Sodium‐Ion Batteries , 2018 .

[13]  Jianhua Xu,et al.  All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes , 2018 .

[14]  Zhengbing Qi,et al.  One-step synthesis of graphitic-C 3 N 4 /ZnS composites for enhanced supercapacitor performance , 2017 .

[15]  A. Singh,et al.  Synthesis and characterization of ZnS quantum dots and application for development of arginine biosensor , 2017 .

[16]  Yongsong Luo,et al.  Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor , 2017, Nano Research.

[17]  L. Cavalcante,et al.  Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications , 2017, Journal of Solid State Electrochemistry.

[18]  Sungho Kang,et al.  A Survey of Repair Analysis Algorithms for Memories , 2016, ACM Comput. Surv..

[19]  Xiaogang Zhang,et al.  Self-sacrifice Template Formation of Hollow Hetero-Ni7S6/Co3S4 Nanoboxes with Intriguing Pseudo-capacitance for High-performance Electrochemical Capacitors , 2016, Scientific Reports.

[20]  Rajendran Ramachandran,et al.  Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes , 2015 .

[21]  Hong Zhao,et al.  A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. , 2013, Journal of materials chemistry. B.

[22]  M. Seery,et al.  Anti-bacterial activity of indoor-light activated photocatalysts , 2013 .

[23]  Qiang Zhang,et al.  Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density , 2012 .

[24]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[25]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[26]  R. Chahine,et al.  The Influence of the Range of Electroactivity and Capacitance of Conducting Polymers on the Performance of Carbon Conducting Polymer Hybrid Supercapacitor , 2003 .