The Dynamics and Interaction of Quantized Vortices in the Ginzburg-Landau-Schrödinger Equation
暂无分享,去创建一个
Qiang Du | Yanzhi Zhang | Weizhu Bao | Q. Du | W. Bao | Yanzhi Zhang
[1] John C. Neu,et al. Vortex dynamics of the nonlinear wave equation , 1990 .
[2] Petru Mironescu,et al. Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale , 1996 .
[3] J. Xin,et al. On the Dynamical Law of the Ginzburg-Landau Vortices on the Plane , 1999 .
[4] F-H Lin,et al. A unified approach to vortex motion laws of complex scalar field equations , 1998 .
[5] Q.. Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity , 2001 .
[6] Frank Pacard,et al. The Ginzburg-Landau Equation in ℂ , 2000 .
[7] O. Lange,et al. Unstable manifolds and Schrödinger dynamics of Ginzburg–Landau vortices , 2002 .
[8] Patricia Bauman,et al. Vortex annihilation in nonlinear heat flow for Ginzburg–Landau systems , 1995, European Journal of Applied Mathematics.
[9] Binheng Song,et al. Vortex Dynamics of Ginzburg–Landau Equations in Inhomogeneous Superconductors , 2001 .
[10] Qiang Du,et al. Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..
[11] Yanzhi Zhang,et al. DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION , 2005 .
[12] Huai-Yu Jian. The dynamical law of Ginzburg-Landau vortices with a pinning effect , 2000, Appl. Math. Lett..
[13] Peterson,et al. Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.
[14] Etienne Sandier,et al. The symmetry of minimizing harmonic maps from a two dimensional domain to the sphere , 1993 .
[15] Qiang Du,et al. Numerical approximations of the Ginzburg–Landau models for superconductivity , 2005 .
[16] Qiang Du,et al. STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES , 2022 .
[17] Petru Mironescu,et al. On the Stability of Radial Solutions of the Ginzburg-Landau Equation , 1995 .
[18] Robert L. Jerrard,et al. Vortex dynamics for the Ginzburg-Landau-Schrodinger equation , 1997 .
[19] S. Jonathan Chapman,et al. Motion of Vortices in Type II Superconductors , 1995, SIAM J. Appl. Math..
[20] Qiang Du,et al. Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .
[21] Israel Michael Sigal,et al. Long-time behaviour of Ginzburg-Landau vortices , 1998 .
[22] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[23] W. Bao. Numerical Methods for the Nonlinear Schrödinger Equation with Nonzero Far-field Conditions , 2004 .
[24] Qiang Du,et al. Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation , 2007, European Journal of Applied Mathematics.
[25] Halil Mete Soner,et al. Dynamics of Ginzburg‐Landau Vortices , 1998 .
[26] Jack Xin,et al. Dynamic stability of vortex solutions of Ginzburg-Landau and nonlinear Schrödinger equations , 1996 .
[27] J. Xin,et al. On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .
[28] Israel Michael Sigal,et al. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF GINZBURG–LANDAU AND RELATED EQUATIONS , 2000 .
[29] Qiang Du,et al. Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..
[30] Israel Michael Sigal,et al. The Ginzburg-Landau equation III. Vortex dynamics , 1998 .
[31] Fanghua Lin,et al. Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .
[32] Israel Michael Sigal,et al. Symmetry-breaking solutions of the Ginzburg-Landau equation , 2004 .
[33] Yanzhi Zhang,et al. Dynamics of the center of mass in rotating Bose--Einstein condensates , 2007 .
[34] Israel Michael Sigal,et al. Ginzburg-Landau equation I. Static vortices , 1997 .
[35] E Weinan,et al. Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .
[36] George Adomian,et al. The Ginzburg-Landau equation , 1995 .
[37] F. Lin. Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds , 1998 .
[38] Qiang Du,et al. STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES 1) , 2004 .
[39] John C. Neu,et al. Vortices in complex scalar fields , 1990 .