The Dynamics and Interaction of Quantized Vortices in the Ginzburg-Landau-Schrödinger Equation

The dynamic laws of quantized vortex interactions in the Ginzburg–Landau–Schrodinger equation (GLSE) are analytically and numerically studied. A review of the reduced dynamic laws governing the motion of vortex centers in the GLSE is provided. The reduced dynamic laws are solved analytically for some special initial data. By directly simulating the GLSE with an efficient and accurate numerical method proposed recently in [Y. Zhang, W. Bao, and Q. Du, Numerical simulation of vortex dynamics in Ginzburg–Landau–Schrodinger equation, European J. Appl. Math., to appear], we can qualitatively and quantitatively compare quantized vortex interaction patterns of the GLSE with those from the reduced dynamic laws. Some conclusive findings are obtained, and discussions on numerical and theoretical results are made to provide further understanding of vortex interactions in the GLSE. Finally, the vortex motion under an inhomogeneous potential in the GLSE is also studied.

[1]  John C. Neu,et al.  Vortex dynamics of the nonlinear wave equation , 1990 .

[2]  Petru Mironescu,et al.  Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale , 1996 .

[3]  J. Xin,et al.  On the Dynamical Law of the Ginzburg-Landau Vortices on the Plane , 1999 .

[4]  F-H Lin,et al.  A unified approach to vortex motion laws of complex scalar field equations , 1998 .

[5]  Q. Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity , 2001 .

[6]  Frank Pacard,et al.  The Ginzburg-Landau Equation in ℂ , 2000 .

[7]  O. Lange,et al.  Unstable manifolds and Schrödinger dynamics of Ginzburg–Landau vortices , 2002 .

[8]  Patricia Bauman,et al.  Vortex annihilation in nonlinear heat flow for Ginzburg–Landau systems , 1995, European Journal of Applied Mathematics.

[9]  Binheng Song,et al.  Vortex Dynamics of Ginzburg–Landau Equations in Inhomogeneous Superconductors , 2001 .

[10]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[11]  Yanzhi Zhang,et al.  DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION , 2005 .

[12]  Huai-Yu Jian The dynamical law of Ginzburg-Landau vortices with a pinning effect , 2000, Appl. Math. Lett..

[13]  Peterson,et al.  Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.

[14]  Etienne Sandier,et al.  The symmetry of minimizing harmonic maps from a two dimensional domain to the sphere , 1993 .

[15]  Qiang Du,et al.  Numerical approximations of the Ginzburg–Landau models for superconductivity , 2005 .

[16]  Qiang Du,et al.  STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES , 2022 .

[17]  Petru Mironescu,et al.  On the Stability of Radial Solutions of the Ginzburg-Landau Equation , 1995 .

[18]  Robert L. Jerrard,et al.  Vortex dynamics for the Ginzburg-Landau-Schrodinger equation , 1997 .

[19]  S. Jonathan Chapman,et al.  Motion of Vortices in Type II Superconductors , 1995, SIAM J. Appl. Math..

[20]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .

[21]  Israel Michael Sigal,et al.  Long-time behaviour of Ginzburg-Landau vortices , 1998 .

[22]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[23]  W. Bao Numerical Methods for the Nonlinear Schrödinger Equation with Nonzero Far-field Conditions , 2004 .

[24]  Qiang Du,et al.  Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation , 2007, European Journal of Applied Mathematics.

[25]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[26]  Jack Xin,et al.  Dynamic stability of vortex solutions of Ginzburg-Landau and nonlinear Schrödinger equations , 1996 .

[27]  J. Xin,et al.  On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .

[28]  Israel Michael Sigal,et al.  ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF GINZBURG–LANDAU AND RELATED EQUATIONS , 2000 .

[29]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[30]  Israel Michael Sigal,et al.  The Ginzburg-Landau equation III. Vortex dynamics , 1998 .

[31]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[32]  Israel Michael Sigal,et al.  Symmetry-breaking solutions of the Ginzburg-Landau equation , 2004 .

[33]  Yanzhi Zhang,et al.  Dynamics of the center of mass in rotating Bose--Einstein condensates , 2007 .

[34]  Israel Michael Sigal,et al.  Ginzburg-Landau equation I. Static vortices , 1997 .

[35]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[36]  George Adomian,et al.  The Ginzburg-Landau equation , 1995 .

[37]  F. Lin Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds , 1998 .

[38]  Qiang Du,et al.  STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES 1) , 2004 .

[39]  John C. Neu,et al.  Vortices in complex scalar fields , 1990 .