The European Quantum Technologies Roadmap

Within the last two decades, Quantum Technologies (QT) have made tremendous progress, moving from Noble Prize award-winning experiments on quantum physics into a cross-disciplinary field of applied research. Technologies are being developed now that explicitly address individual quantum states and make use of the 'strange' quantum properties, such as superposition and entanglement. The field comprises four domains: Quantum Communication, Quantum Simulation, Quantum Computation, and Quantum Sensing and Metrology. One success factor for the rapid advancement of QT is a well-aligned global research community with a common understanding of the challenges and goals. In Europe, this community has profited from several coordination projects, which have orchestrated the creation of a 150-page QT Roadmap. This article presents an updated summary of this roadmap. Besides sections on the four domains of QT, we have included sections on Quantum Theory and Software, and on Quantum Control, as both are important areas of research that cut across all four domains. Each section, after a short introduction to the domain, gives an overview on its current status and main challenges and then describes the advances in science and technology foreseen for the next ten years and beyond.

[1]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[2]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[3]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[4]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[5]  J. Buchmann,et al.  Quantum cryptography: a view from classical cryptography , 2017 .

[6]  Antonio Acín,et al.  Certified randomness in quantum physics , 2016, Nature.

[7]  W. Ertmer,et al.  Improvement of an Atomic Clock using Squeezed Vacuum. , 2016, Physical review letters.

[8]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[9]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[10]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[11]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[12]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[13]  U. Boscain,et al.  THE EUROPEAN PHYSICAL JOURNAL D Training Schrödinger ’ s cat : quantum optimal control Strategic report on current status , visions and goals for research in Europe , 2015 .

[14]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[15]  D. McClelland,et al.  Quantum squeezed light in gravitational-wave detectors , 2014 .

[16]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[17]  T. Schumm,et al.  Interferometry with non-classical motional states of a Bose–Einstein condensate , 2014, Nature Communications.

[18]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[19]  Shigeki Takeuchi,et al.  An entanglement-enhanced microscope , 2013, Nature Communications.

[20]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[21]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[22]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[23]  S. Montangero,et al.  Fast closed-loop optimal control of ultracold atoms in an optical lattice , 2013, 1303.5615.

[24]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[25]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[26]  N. Godbout,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[27]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[28]  Eric Wille,et al.  Quantum optics experiments using the International Space Station: a proposal , 2012, 1211.2111.

[29]  Maciej Lewenstein,et al.  Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems , 2012 .

[30]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[31]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[32]  J. García-Ripoll Quantum simulation with trapped ions , 2011 .

[33]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[34]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[35]  V. Vuletić,et al.  Orientation-dependent entanglement lifetime in a squeezed atomic clock. , 2010, Physical review letters.

[36]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[37]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[38]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[39]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[40]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[41]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[42]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[43]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[44]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[45]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[46]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[47]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[48]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[49]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[50]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[51]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[52]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[53]  R. Feynman Simulating physics with computers , 1999 .