Diffusion in Spatially Varying Porous Media

The problem of diffusion in a porous medium with a spatially varying porosity is considered. The particular microstructure analyzed comprises a collection of impenetrable spheres, though the methods developed are general. Two different approaches for calculating the effective diffusion coefficient as a function of the microstructure are presented. The first is a deterministic approach based on the method of multiple scales; the second is a stochastic approach for small volume fraction of spheres based on matched asymptotic expansions. We compare the two approaches, and we show good agreement between them in a number of example configurations.

[1]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.

[2]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[3]  John William Strutt,et al.  Scientific Papers: On the Influence of Obstacles arranged in Rectangular Order upon the Properties of a Medium , 2009 .

[4]  G. Dagan Flow and transport in porous formations , 1989 .

[5]  P. Shearing,et al.  Particle Size Polydispersity in Li-Ion Batteries , 2014 .

[6]  S. Prager,et al.  DIFFUSION AND VISCOUS FLOW IN CONCENTRATED SUSPENSIONS , 1963 .

[7]  S. Whitaker,et al.  Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment , 1993 .

[8]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[9]  S. Whitaker The method of volume averaging , 1998 .

[10]  Maria Bruna,et al.  Excluded-volume effects in the diffusion of hard spheres. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Leonardo Dagdug,et al.  Discriminating between anomalous diffusion and transient behavior in microheterogeneous environments. , 2014, Biophysical journal.

[12]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[13]  Pavel Kraikivski,et al.  Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. , 2009, Biophysical journal.

[14]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[15]  John H. Cushman,et al.  A primer on upscaling tools for porous media , 2002 .

[16]  Maria Bruna,et al.  Diffusion of multiple species with excluded-volume effects. , 2012, The Journal of chemical physics.

[17]  F. Brunet,et al.  Heterogeneous Porosity Distribution in Portland Cement Exposed to CO2-rich Fluids , 2008 .

[18]  Jose Alvarez-Ramirez,et al.  A volume averaging approach for asymmetric diffusion in porous media. , 2011, The Journal of chemical physics.

[19]  Harold L. Weissberg,et al.  Effective Diffusion Coefficient in Porous Media , 1963 .

[20]  D Gavaghan,et al.  Hydrodynamic dispersion within porous biofilms. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  F. Otto,et al.  Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics , 2013 .

[22]  S. Kozlov,et al.  The method of averaging and walks in inhomogeneous environments , 1985 .

[23]  S. Jonathan Chapman,et al.  Derivation of the Bidomain Equations for a Beating Heart with a General Microstructure , 2011, SIAM J. Appl. Math..

[24]  B. Halle,et al.  SOLVENT DIFFUSION IN ORDERED MACROFLUIDS : A STOCHASTIC SIMULATION STUDY OF THE OBSTRUCTION EFFECT , 1996 .

[25]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[26]  Yohan Davit,et al.  Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? , 2013 .

[27]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[28]  H. Brenner,et al.  Dispersion resulting from flow through spatially periodic porous media , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  John H. Cushman,et al.  The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles , 1997 .

[30]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[31]  Salvatore Torquato,et al.  Modeling of physical properties of composite materials , 2000 .

[32]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[33]  Jérôme Lux A Non-periodic Closure Scheme for the Determination of Effective Diffusivity in Real Porous Media , 2010 .