An alternative explanation for the manner in which genetic algorithms operate.

[1]  J. Thoday Population Genetics , 1956, Nature.

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  R. Michod,et al.  The molecular basis of the evolution of sex. , 1987, Advances in genetics.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[6]  John J. Grefenstette,et al.  Conditions for Implicit Parallelism , 1990, FOGA.

[7]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[8]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[9]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[10]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[11]  John J. Grefenstette,et al.  Deception Considered Harmful , 1992, FOGA.

[12]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[13]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[14]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[15]  A. E. Eiben,et al.  Genetic algorithms with multi-parent recombination , 1994, PPSN.

[16]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[17]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[18]  Kenneth A. De Jong,et al.  Using Markov Chains to Analyze GAFOs , 1994, FOGA.

[19]  Heinz Mühlenbein,et al.  On the Mean Convergence Time of Evolutionary Algorithms without Selection and Mutation , 1994, PPSN.

[20]  Alden H. Wright,et al.  Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.

[21]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[22]  L. C. Stayton,et al.  On the effectiveness of crossover in simulated evolutionary optimization. , 1994, Bio Systems.

[23]  A. E. Eiben,et al.  Solving constraint satisfaction problems using genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[24]  Hans-Georg Beyer,et al.  Towards a Theory of 'Evolution Strategies': Results for (1, +λ)-Strategies on (Nearly) Arbitrary Fitness Functions , 1994, PPSN.

[25]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[26]  A. E. Eiben,et al.  Orgy in the Computer: Multi-Parent Reproduction in Genetic Algorithms , 1995, ECAL.

[27]  Sys,et al.  How Gas Do Not Work Understanding Gas without Schemata and Building Blocks , 1995 .

[28]  John R. Koza,et al.  Hidden Order: How Adaptation Builds Complexity. , 1995, Artificial Life.

[29]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[30]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[31]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[32]  A. E. Eiben,et al.  Multi-Parent's Niche: n-ary Crossovers on NK-Landscapes , 1996, PPSN.

[33]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .