Maximal AMDS codes

Complete (n, k)-arcs in PG(k − 1, q) and projective (n, k)q-AMDS codes that admit no projective extensions are equivalent objects. We show that projective AMDS codes of reasonable length admit only linear extensions. Thus, we are able to prove the maximality of many known linear AMDS codes. At the same time our results sharply limit the possibilities for constructing long nonlinear AMDS codes. We also show that certain short linear AMDS codes are maximal. Central to our approach is the Bruen–Silverman model of linear codes first introduced in Alderson (On MDS codes and Bruen–Silverman codes. Ph.D. Thesis, University of Western Ontario, 2002) and Alderson et al. (J. Combin. Theory Ser. A 114(6), 1101–1117, 2007).

[1]  Mario A. de Boer,et al.  Almost MDS codes , 1996, Des. Codes Cryptogr..

[2]  Simeon Ball The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.

[3]  James W. P. Hirschfeld,et al.  Complete arcs , 1997, Discret. Math..

[4]  László Rédei Lacunary Polynomials Over Finite Fields , 1973 .

[5]  S. Dodunekov,et al.  On near-MDS codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[6]  R. Silverman,et al.  A Metrization for Power-Sets with Applications to Combinatorial Analysis , 1960, Canadian Journal of Mathematics.

[7]  Alfred Wassermann,et al.  Construction of (n,r)-arcs in PG(2,q) , 2005 .

[8]  A. Bruen,et al.  On extendable planes, M.D.S. codes and hyperovals in PG(2, q), q=2t , 1988 .

[9]  James W. P. Hirschfeld,et al.  Bounds on (n, r)-arcs and their application to linear codes , 2005, Finite Fields Their Appl..

[10]  Alfredo Milani,et al.  Maximal (n, 3)-arcs in PG(2, 11) , 1999, Discret. Math..

[11]  Simeon Ball,et al.  Multiple Blocking Sets and Arcs in Finite Planes , 1996 .

[12]  S. Mochizuki ICM 1998, Berlin, Aug. 18--27 Abstracts of Plenary and Invited Lectures , 2007 .

[13]  Aiden A. Bruen,et al.  Maximum distance separable codes and arcs in projective spaces , 2007, J. Comb. Theory, Ser. A.

[14]  Massimo Giulietti,et al.  On the Extendibility of Near-MDS Elliptic Codes , 2004, Applicable Algebra in Engineering, Communication and Computing.

[15]  B. Segre Curve razionali normali ek-archi negli spazi finiti , 1955 .

[16]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[17]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[18]  Aart Blokhuis,et al.  On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.

[19]  Ivan N. Landjev,et al.  Near-MDS codes over some small fields , 2000, Discret. Math..

[20]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[21]  A. Blokhuis,et al.  On M.D.S. codes, arcs inPG(n, q) withq even, and a solution of three fundamental problems of B. Segre , 1988 .

[22]  José Felipe Voloch,et al.  The characterization of elliptic curves over finite fields , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[23]  M. Barnabei,et al.  On Small {k; q}-arcs in Planes of Order q2 , 1978, J. Comb. Theory A.

[24]  Alfredo Milani,et al.  Maximal (n, 3)-arcs in PG(2, 13) , 2005, Discret. Math..