Spaces of Abelian Differentials and Hitchin’s Spectral Covers

Using the embedding of the moduli space of generalized $GL(n)$ Hitchin’s spectral covers to the moduli space of meromorphic Abelian differentials we study the variational formulæ of the period matrix, the canonical bidifferential, the prime form and the Bergman tau function. This leads to residue formulæ which generalize the Donagi–Markman formula for variations of the period matrix. The computation of second derivatives of the period matrix reproduces the formula derived in [2] using the framework of topological recursion.

[1]  D. Baraglia,et al.  Special Kähler geometry of the Hitchin system and topological recursion , 2017, Advances in Theoretical and Mathematical Physics.

[2]  D. Korotkin,et al.  Tau functions, Hodge classes, and discriminant loci on moduli spaces of Hitchin’s spectral covers , 2018, Journal of Mathematical Physics.

[3]  M. Bertola,et al.  Symplectic geometry of the moduli space of projective structures in homological coordinates , 2015, 1506.07918.

[4]  A. Eskin,et al.  Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow , 2011, 1112.5872.

[5]  D. Korotkin,et al.  Baker–Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials , 2013, 1307.0481.

[6]  D. Korotkin,et al.  Tau function and moduli of differentials , 2010, 1003.2173.

[7]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[8]  A. Kokotov,et al.  Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray-Singer formula , 2004, math/0405042.

[9]  M. Bertola,et al.  Second and Third Order Observables of the Two-Matrix Model , 2003, hep-th/0309192.

[10]  D. Korotkin Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices , 2003 .

[11]  Anton Zorich,et al.  Connected components of the moduli spaces of Abelian differentials with prescribed singularities , 2002, math/0201292.

[12]  M. Kontsevich,et al.  LYAPUNOV EXPONENTS AND HODGE THEORY , 1997, hep-th/9701164.

[13]  J. Dubochet,et al.  Geometry and physics of knots , 1996, Nature.

[14]  R. Donagi,et al.  Spectral curves, algebraically completely integrable Hamiltonian systems, and moduli of bundles , 1995, alg-geom/9507017.

[15]  John D. Fay Kernel functions, analytic torsion, and moduli spaces , 1992 .

[16]  M. Atiyah The geometry and physics of knots: Frontmatter , 1990 .

[17]  V. G. Knizhnik REVIEWS OF TOPICAL PROBLEMS: Multiloop amplitudes in the theory of quantum strings and complex geometry , 1989 .

[18]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[19]  N. Hitchin Stable bundles and integrable systems , 1987 .