On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey
暂无分享,去创建一个
[1] Joos Heintz,et al. Lower Bounds for Polynomials with Algebraic Coefficients , 1980, Theor. Comput. Sci..
[2] Don Coppersmith,et al. On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..
[3] Hans F. de Groote. Characterization of Division Algebras of Minimal Rank and the Structure of Their Algorithm Varieties , 1983, SIAM J. Comput..
[4] V. Pan. METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .
[5] Volker Strassen. Evaluation of Rational Functions , 1972, Complexity of Computer Computations.
[6] Joos Heintz,et al. Commutative algebras of minimal rank , 1983 .
[7] Arnold Schönhage,et al. Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..
[8] Walter Baur,et al. The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..
[9] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[10] Volker Strassen,et al. Polynomials with Rational Coefficients Which are Hard to Compute , 1974, SIAM J. Comput..
[11] Joos Heintz,et al. On Polynomials with Symmetric Galois Group which Are Easy to Compute , 1986, Theor. Comput. Sci..
[12] Larry J. Stockmeyer,et al. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..
[13] Jacques Morgenstern,et al. On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.
[14] Joachim von zur Gathen,et al. Some Polynomials that are Hard to Compute , 1980, Theor. Comput. Sci..
[15] C.P. Schnorr. Improved Lower Bounds on the Number of Multiplications/Divisions which are Necessary of Evaluate Polynomials , 1978, Theor. Comput. Sci..
[16] Michael Clausen,et al. On a class of primary algebras of minimal rank , 1985 .
[17] R. Remmert,et al. Perspectives in mathematics : anniversary of Oberwolfach 1984 , 1984 .
[18] Richard J. Lipton,et al. Evaluation of polynomials with super-preconditioning , 1976, STOC '76.
[19] Grazia Lotti,et al. O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..
[20] Arnold Schönhage. An Elementary Proof for Strassen's Degree Bound , 1976, Theor. Comput. Sci..
[21] Ephraim Feig. On Systems of Bilinear Forms Whose Minimal Division-Free Algorithms Are All Bilinear , 1981, J. Algorithms.
[22] Joos Heintz,et al. Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.
[23] Volker Strassen,et al. On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..
[24] Hans F. de Groote. Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.
[25] Hans F. de Groote. On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..
[26] Claus-Peter Schnorr,et al. An Extension of Strassen's Degree Bound , 1981, SIAM J. Comput..
[27] F. G. Benedict. Nutrition of the elephant. , 1936 .
[28] V. Strassen. Relative bilinear complexity and matrix multiplication. , 1987 .
[29] V. Strassen. Gaussian elimination is not optimal , 1969 .
[30] Shmuel Winograd. On computing the Discrete Fourier Transform. , 1976 .
[31] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[32] Yechezkel Zalcstein,et al. Algebras Having Linear Multiplicative Complexities , 1977, JACM.
[33] V. Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .
[34] Jean-Jacques Risler,et al. Additive Complexity and Zeros of Real Polynomials , 1985, SIAM J. Comput..
[35] Hans F. de Groote. On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings. II. Optimal Algorithms for 2x2-Matrix Multiplication , 1978, Theor. Comput. Sci..