On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey

This a r t i c l e is d e d i c a t e d to t h e s t u d y of t h e complex i ty of c o m p u t i n g a n d dec id ing s e l ec t ed p r o b l e m s in a lgebra , The m e t h o d s used he re a re a lgeb ra i ca l a n d (a lgebra ica l ly ) g e o m e t r i c a l in n a t u r e . The p r o b l e m s d e a l t wi th may be looked a t as m a t h e m a t i c a l mode l s of q u e s t i o n s ar ising in t h e o r e t i c a l c o m p u t e r sc ience . This, however, does n o t c o r r e s p o n d exac t ly to t h e h i s to r i cal d e v e l o p m e n t of a l g e b r a i c complex i ty theory , where a s p e c t s of n u m e r i c a l ana lys i s p lay a role too [ S t r a s s e n 1984]. As fa r as p r a c t i c a l a p p l i c a t i o n s a re c o n c e r n e d , i t is c e r t a i n l y t h e d e v e l o p m e n t of fas t a n d eff icient a l g o r i t h m s which is p r o m i n e n t . Here t h e m a t h e m a t i c i a n is i n t e r e s t e d m a i n l y in s u c h a l g o r i t h m s which a r e b a s e d on m a t h e m a t i c a l p rob lems . But t h i s a lone does n o t c o n s t i t u t e c o m p l e x i t y t h e o r y in i t s m o d e r n sense. I t is d e d i c a t e d to t h e s y s t e m a t i c s t u d y of t h e c o m p l e x i t y of p r o b l e m s known to be so lvable by a lgor i thms . Firs t , t h i s r e q u i r e s t h e d e v e l o p m e n t of m a t h e m a t i c a l l y p rec i se mode l s of complex i ty which o f t en a re s impl i f i ca t ions of t h e u s e r ' s c o n c e p t i o n s of eff iciency an d i t i n c l u d e s t h e q u e s t i o n w h e t h e r a g iven p r o c e d u r e is op t imal .

[1]  Joos Heintz,et al.  Lower Bounds for Polynomials with Algebraic Coefficients , 1980, Theor. Comput. Sci..

[2]  Don Coppersmith,et al.  On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..

[3]  Hans F. de Groote Characterization of Division Algebras of Minimal Rank and the Structure of Their Algorithm Varieties , 1983, SIAM J. Comput..

[4]  V. Pan METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .

[5]  Volker Strassen Evaluation of Rational Functions , 1972, Complexity of Computer Computations.

[6]  Joos Heintz,et al.  Commutative algebras of minimal rank , 1983 .

[7]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[8]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[9]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[10]  Volker Strassen,et al.  Polynomials with Rational Coefficients Which are Hard to Compute , 1974, SIAM J. Comput..

[11]  Joos Heintz,et al.  On Polynomials with Symmetric Galois Group which Are Easy to Compute , 1986, Theor. Comput. Sci..

[12]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[13]  Jacques Morgenstern,et al.  On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.

[14]  Joachim von zur Gathen,et al.  Some Polynomials that are Hard to Compute , 1980, Theor. Comput. Sci..

[15]  C.P. Schnorr Improved Lower Bounds on the Number of Multiplications/Divisions which are Necessary of Evaluate Polynomials , 1978, Theor. Comput. Sci..

[16]  Michael Clausen,et al.  On a class of primary algebras of minimal rank , 1985 .

[17]  R. Remmert,et al.  Perspectives in mathematics : anniversary of Oberwolfach 1984 , 1984 .

[18]  Richard J. Lipton,et al.  Evaluation of polynomials with super-preconditioning , 1976, STOC '76.

[19]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[20]  Arnold Schönhage An Elementary Proof for Strassen's Degree Bound , 1976, Theor. Comput. Sci..

[21]  Ephraim Feig On Systems of Bilinear Forms Whose Minimal Division-Free Algorithms Are All Bilinear , 1981, J. Algorithms.

[22]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[23]  Volker Strassen,et al.  On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..

[24]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[25]  Hans F. de Groote On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..

[26]  Claus-Peter Schnorr,et al.  An Extension of Strassen's Degree Bound , 1981, SIAM J. Comput..

[27]  F. G. Benedict Nutrition of the elephant. , 1936 .

[28]  V. Strassen Relative bilinear complexity and matrix multiplication. , 1987 .

[29]  V. Strassen Gaussian elimination is not optimal , 1969 .

[30]  Shmuel Winograd On computing the Discrete Fourier Transform. , 1976 .

[31]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[32]  Yechezkel Zalcstein,et al.  Algebras Having Linear Multiplicative Complexities , 1977, JACM.

[33]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .

[34]  Jean-Jacques Risler,et al.  Additive Complexity and Zeros of Real Polynomials , 1985, SIAM J. Comput..

[35]  Hans F. de Groote On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings. II. Optimal Algorithms for 2x2-Matrix Multiplication , 1978, Theor. Comput. Sci..