Centip3De: A 3930DMIPS/W configurable near-threshold 3D stacked system with 64 ARM Cortex-M3 cores

Recent high performance IC design has been dominated by power density constraints. 3D integration increases device density even further, and these devices will not be usable without viable strategies to reduce power consumption. This paper proposes the use of near-threshold computing (NTC) to address this issue in a stacked 3D system. In NTC, cores are operated near the threshold voltage (~200mV above Vth) to optimally balance power and performance [1]. In Centip3De, we operate cores at 650mV, as opposed to the wear-out limited supply voltage of 1.5V. This improves measured energy efficiency by 5.1×. The dramatically lower power consumption of NTC makes it an attractive match for 3D design, which has limited power dissipation capabilities, but also has improved innate power and performance compared to 2D design.

[1]  David Blaauw,et al.  Energy efficient near-threshold chip multi-processing , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).