OPEN T-J CHAIN WITH BOUNDARY IMPURITIES

We study integrable boundary conditions for the supersymmetric t-J model of correlated electrons which arise when combining static scattering potentials with dynamical impurities carrying an internal degree of freedom. The latter differ from the bulk sites by allowing for double occupation of the local orbitals. The spectrum of the resulting Hamiltonians is obtained by means of the algebraic Bethe ansatz.

[1]  N. Slavnov,et al.  New solutions to the reflection equation and the projecting method , 1998, cond-mat/9810312.

[2]  M. Gould,et al.  Graded reflection equation algebras and integrable Kondo impurities in the one-dimensional t-J model , 1998, cond-mat/9809056.

[3]  A. Foerster,et al.  Integrability of a t J model with impurities , 1998, cond-mat/9806129.

[4]  J. Abad,et al.  Exact solution of an electron system combining two different t-J models , 1998, cond-mat/9806106.

[5]  F. Pu,et al.  Integrabilities of the t- J model with impurities , 1998, cond-mat/9804032.

[6]  Yupeng Wang Exact solution of the open Heisenberg chain with two impurities , 1997, cond-mat/9805253.

[7]  A. Zvyagin,et al.  The open spin chain with impurity: an exact solution , 1997 .

[8]  J. Dai,et al.  EXACT RESULTS FOR A KONDO PROBLEM IN A ONE-DIMENSIONAL T-J MODEL , 1997, cond-mat/9706086.

[9]  F. Essler,et al.  X-ray edge singularity in integrable lattice models of correlated electrons , 1997, cond-mat/9702234.

[10]  H. Frahm,et al.  Spectrum of boundary states in the open Hubbard chain , 1997, cond-mat/9702227.

[11]  A. Zvyagin,et al.  Integrable supersymmetric t-J model with magnetic impurity , 1997 .

[12]  F. Essler,et al.  Exact solution of a t−J chain with impurity , 1996, cond-mat/9610222.

[13]  H. Asakawa,et al.  Boundary susceptibilities of the Hubbard model in open chains , 1996 .

[14]  I. Affleck Boundary Condition Changing Operators in Conformal Field Theory and Condensed Matter Physics , 1996, hep-th/9611064.

[15]  F. Essler,et al.  INTEGRABLE IMPURITY IN THE SUPERSYMMETRIC T-J MODEL , 1996, cond-mat/9609262.

[16]  F. Essler The supersymmetric t - J model with a boundary , 1996, cond-mat/9605180.

[17]  R. A. Romer,et al.  Absence of backscattering at integrable impurities in one-dimensional quantum many-body systems , 1995, cond-mat/9512139.

[18]  A. Gonz'alez--Ruiz Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.

[19]  I. Affleck,et al.  Integrable versus non-integrable spin chain impurity models , 1993, cond-mat/9306003.

[20]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[21]  Fisher,et al.  Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[22]  Korepin,et al.  Higher conservation laws and algebraic Bethe Ansa-umltze for the supersymmetric t-J model. , 1992, Physical review. B, Condensed matter.

[23]  H. Schulz,et al.  The exact susceptibility of a Kondo spin-1/2 for ferromagnetic coupling and T= 0 , 1990 .

[24]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[25]  R. Schulz CORRIGENDUM: An exactly solvable Kondo model with quadratic band energy , 1987 .

[26]  I. Cherednik Factorizing particles on a half-line and root systems , 1984 .

[27]  N. Andrei,et al.  Heisenberg chain with impurities (an integrable model) , 1984 .