Development of a computationally efficient algorithm for attitude estimation of a remote sensing satellite

This paper presents a computationally efficient algorithm for attitude estimation of remote a sensing satellite. In this study, gyro, magnetometer, sun sensor and star tracker are used in Extended Kalman Filter (EKF) structure for the purpose of Attitude Determination (AD). However, utilizing all of the measurement data simultaneously in EKF structure increases computational burden. Specifically, assuming n observation vectors, an inverse of a 3n×3n matrix is required for gain calculation. In order to solve this problem, an efficient version of EKF, namely Murrell’s version, is employed. This method utilizes measurements separately at each sampling time for gain computation. Therefore, an inverse of a 3n×3n matrix is replaced by an inverse of a 3×3 matrix for each measurement vector. Moreover, gyro drifts during the time can reduce the pointing accuracy. Therefore, a calibration algorithm is utilized for estimation of the main gyro parameters.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Qian Huaming,et al.  Robust extended Kalman filter for attitude estimation with multiplicative noises and unknown external disturbances , 2014 .

[4]  Mark E. Pittelkau,et al.  Kalman Filtering for Spacecraft System Alignment Calibration , 2001 .

[5]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[6]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[7]  R. Farrenkopf Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators , 1978 .

[8]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[9]  Stephano P. Coraluppi Optimal Estimation of Domains of Attraction for Nonlinear Dynamical Systems , 1992 .

[10]  John L. Crassidis,et al.  Fundamentals of Spacecraft Attitude Determination and Control , 2014 .

[11]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[12]  John L. Crassidis,et al.  Attitude Estimation Employing Common Frame Error Representations , 2015 .

[13]  Sang-Young Park,et al.  Sigma-Point Kalman Filtering for Spacecraft Attitude and Rate Estimation Using Magnetometer Measurements , 2008 .

[14]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[15]  John Junkins,et al.  Optimal Estimation of Dynamic Systems, Second Edition , 2011 .

[16]  Yaakov Oshman,et al.  Estimating Attitude from Vector Observations Using a Genetic Algorithm-Embedded Quaternion Particle Filter , 2004 .

[17]  F. Markley,et al.  Attitude Estimation Using Modified Rodrigues Parameters , 1996 .