A Monadic Second-Order Definition of the Structure of Convex Hypergraphs
暂无分享,去创建一个
[1] Matthias Baaz. Note on the Generalization of Calculations , 1999, Theor. Comput. Sci..
[2] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[3] J.-C. Fournier. Hypergraphes de chaines d'aretes d'un arbre , 1983, Discret. Math..
[4] F. Radermacher,et al. Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .
[5] Bruno Courcelle,et al. The monadic second-order logic of graphs XII: planar graphs and planar maps , 2000, Theor. Comput. Sci..
[6] Paola Bonizzoni,et al. Modular Decomposition of Hypergraphs , 1995, WG.
[7] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..
[8] Denis Lapoire,et al. Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.
[9] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[10] W. T. Tutte. Graph Theory , 1984 .
[11] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..
[12] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs , 1999, Theor. Comput. Sci..
[13] Bruno Courcelle,et al. The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..
[14] Bruno Courcelle,et al. The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.
[15] Bruno Courcelle,et al. Monadic Second-Order Definable Graph Transductions: A Survey , 1994, Theor. Comput. Sci..
[16] Bruno Courcelle,et al. A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars , 1995, Math. Syst. Theory.
[17] A. Tucker,et al. A structure theorem for the consecutive 1's property☆ , 1972 .
[18] Bruce A. Reed,et al. P4-comparability graphs , 1989, Discret. Math..
[19] I. Rival. Graphs and Order , 1985 .
[20] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..
[21] Detlef Seese,et al. The Structure of Models of Decidable Monadic Theories of Graphs , 1991, Ann. Pure Appl. Log..
[22] Michel Habib,et al. A New Linear Algorithm for Modular Decomposition , 1994, CAAP.