Spine Dynamics: Are They All the Same?

Since Cajal's first drawings of Golgi stained neurons, generations of researchers have been fascinated by the small protrusions, termed spines, studding many neuronal dendrites. Most excitatory synapses in the mammalian CNS are located on dendritic spines, making spines convenient proxies for excitatory synaptic presence. When in vivo imaging revealed that dendritic spines are dynamic structures, their addition and elimination were interpreted as excitatory synapse gain and loss, respectively. Spine imaging has since become a popular assay for excitatory circuit remodeling. In this review, we re-evaluate the validity of using spine dynamics as a straightforward reflection of circuit rewiring. Recent studies tracking both spines and synaptic markers in vivo reveal that 20% of spines lack PSD-95 and are short lived. Although they account for most spine dynamics, their remodeling is unlikely to impact long-term network structure. We discuss distinct roles that spine dynamics can play in circuit remodeling depending on synaptic content.

[1]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[2]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[3]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[4]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[5]  M. Sheng,et al.  Regulated Expression and Subcellular Localization of Syndecan Heparan Sulfate Proteoglycans and the Syndecan-Binding Protein CASK/LIN-2 during Rat Brain Development , 1999, The Journal of Neuroscience.

[6]  H. Okado,et al.  Spine Formation and Correlated Assembly of Presynaptic and Postsynaptic Molecules , 2001, The Journal of Neuroscience.

[7]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[8]  Anthony Holtmaat,et al.  The Relationship between PSD-95 Clustering and Spine Stability In Vivo , 2014, The Journal of Neuroscience.

[9]  W. Gan,et al.  Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex , 2005, Neuron.

[10]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[11]  Tobias Bonhoeffer,et al.  Prior experience enhances plasticity in adult visual cortex , 2006, Nature Neuroscience.

[12]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[13]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[14]  G. M. Shepherd,et al.  Centenary of the synapse: from Sherrington to the molecular biology of the synapse and beyond , 1997, Trends in Neurosciences.

[15]  J. DeFelipe,et al.  Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex , 1988, Brain Research.

[16]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[17]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[18]  Sebastian Pascarelle,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[19]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[20]  KM Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;12(8):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Lu Chen,et al.  Accelerated Experience-Dependent Pruning of Cortical Synapses in Ephrin-A2 Knockout Mice , 2013, Neuron.

[22]  Lawrence C Katz,et al.  Dendritic stability in the adult olfactory bulb , 2003, Nature Neuroscience.

[23]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[24]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. , 1970, The American journal of anatomy.

[25]  R. Yuste,et al.  Developmental regulation of spine motility in the mammalian central nervous system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Bonhoeffer,et al.  Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons , 2004, Neuron.

[27]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[29]  R. Malinow,et al.  PSD-95 is required for activity-driven synapse stabilization , 2007, Proceedings of the National Academy of Sciences.

[30]  W. Gan,et al.  Sleep promotes branch-specific formation of dendritic spines after learning , 2014, Science.

[31]  Javier DeFelipe,et al.  The dendritic spine story: an intriguing process of discovery , 2015, Front. Neuroanat..

[32]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[33]  R. Yasuda,et al.  Enrichment of N-methyl-D-aspartate NR1 splice variants and synaptic proteins in rat postsynaptic densities. , 2001 .

[34]  K. Harris,et al.  Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated , 1999, Nature Neuroscience.

[35]  J. Fiala,et al.  Synaptogenesis Via Dendritic Filopodia in Developing Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[36]  Dominique Muller,et al.  Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. , 2008, Cerebral cortex.

[37]  Nathalie L Rochefort,et al.  Dendritic spines: from structure to in vivo function , 2012, EMBO reports.

[38]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.

[39]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[40]  E. G. Gray,et al.  Electron Microscopy of Synaptic Contacts on Dendrite Spines of the Cerebral Cortex , 1959, Nature.

[41]  W. Greenough,et al.  Experience-driven brain plasticity: beyond the synapse. , 2004, Neuron glia biology.

[42]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[43]  Kristen M Harris,et al.  Structure, development, and plasticity of dendritic spines , 1999, Current Opinion in Neurobiology.

[44]  K. Harris,et al.  Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission , 2005, The Journal of comparative neurology.

[45]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[46]  C. Hoogenraad,et al.  The postsynaptic architecture of excitatory synapses: a more quantitative view. , 2007, Annual review of biochemistry.

[47]  K M Harris,et al.  Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines , 2000, Hippocampus.

[48]  Richard Mooney,et al.  Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning , 2010, Nature.

[49]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[50]  Karen Zito,et al.  Loss of PSD-95 Enrichment Is Not a Prerequisite for Spine Retraction , 2011, The Journal of Neuroscience.

[51]  E. White,et al.  Quantification of synapses formed with apical dendrites of golgi-impregnated pyramidal cells: Variability in thalamocortical inputs, but consistency in the ratios of asymmetrical to symmetrical synapses , 1981, Neuroscience.

[52]  Deborah S. Barkauskas,et al.  Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex , 2014, Intravital.

[53]  J. Morrison,et al.  Selective Changes in Thin Spine Density and Morphology in Monkey Prefrontal Cortex Correlate with Aging-Related Cognitive Impairment , 2010, The Journal of Neuroscience.

[54]  Tadashi Isa,et al.  In Vivo Two-Photon Imaging of Dendritic Spines in Marmoset Neocortex1,2,3 , 2015, eNeuro.

[55]  G. Ellis‐Davies,et al.  In vivo two‐photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice , 2011, The Journal of physiology.

[56]  A. Lieberman,et al.  Neurons and their synaptic organization in the visual cortex of the rat , 1977, Cell and Tissue Research.

[57]  Tobias Bonhoeffer,et al.  Loss of Sensory Input Causes Rapid Structural Changes of Inhibitory Neurons in Adult Mouse Visual Cortex , 2011, Neuron.

[58]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[59]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[60]  Mark J. Schnitzer,et al.  Impermanence of dendritic spines in live adult CA1 hippocampus , 2015, Nature.

[61]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[62]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[63]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[64]  R. Huganir,et al.  SAP102, a Novel Postsynaptic Protein That Interacts with NMDA Receptor Complexes In Vivo , 1996, Neuron.

[65]  D. Schreiner,et al.  Synapse biology in the ‘circuit-age’—paths toward molecular connectomics , 2017, Current Opinion in Neurobiology.

[66]  K. Svoboda,et al.  Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. , 2000, Learning & memory.

[67]  G. Feng,et al.  Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex , 2005, PLoS biology.

[68]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[69]  R. Yuste,et al.  Activity-Regulated Dynamic Behavior of Early Dendritic Protrusions: Evidence for Different Types of Dendritic Filopodia , 2003, The Journal of Neuroscience.

[70]  Travis C. Hill,et al.  LTP-Induced Long-Term Stabilization of Individual Nascent Dendritic Spines , 2013, The Journal of Neuroscience.

[71]  J. Morrison,et al.  Estrogen Alters Spine Number and Morphology in Prefrontal Cortex of Aged Female Rhesus Monkeys , 2006, The Journal of Neuroscience.

[72]  H. Zoghbi,et al.  Dendritic Arborization and Spine Dynamics Are Abnormal in the Mouse Model of MECP2 Duplication Syndrome , 2013, The Journal of Neuroscience.

[73]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[75]  Karel Svoboda,et al.  Rapid Functional Maturation of Nascent Dendritic Spines , 2009, Neuron.

[76]  Adi Mizrahi,et al.  Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb , 2007, Nature Neuroscience.

[77]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[78]  Elly Nedivi,et al.  Clustered Dynamics of Inhibitory Synapses and Dendritic Spines in the Adult Neocortex , 2012, Neuron.

[79]  P. Somogyi,et al.  Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. , 1997, The Journal of physiology.

[80]  Willie F. Tobin,et al.  Rapid formation and selective stabilization of synapses for enduring motor memories , 2009, Nature.

[81]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[82]  E. Kandel,et al.  Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Y. Kubota,et al.  Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites In Vivo , 2016, Neuron.

[84]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[85]  Yasuo Kawaguchi,et al.  Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. , 2006, Cerebral cortex.

[86]  R. Yasuda,et al.  Enrichment of N‐methyl‐d‐aspartate NR1 splice variants and synaptic proteins in rat postsynaptic densities , 2001, Journal of neurochemistry.

[87]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[88]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[89]  B R Masters,et al.  Two-photon excitation fluorescence microscopy. , 2000, Annual review of biomedical engineering.

[90]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[91]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[92]  J. Hell,et al.  A Developmental Change in NMDA Receptor-Associated Proteins at Hippocampal Synapses , 2000, The Journal of Neuroscience.

[93]  Carlo Sala,et al.  Dendritic spines: the locus of structural and functional plasticity. , 2014, Physiological reviews.

[94]  J. Fiala,et al.  Dendritic spines do not split during hippocampal LTP or maturation , 2002, Nature Neuroscience.

[95]  K. Uchizono Characteristics of Excitatory and Inhibitory Synapses in the Central Nervous System of the Cat , 1965, Nature.

[96]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[97]  R. Nicoll,et al.  Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development , 2008, Proceedings of the National Academy of Sciences.

[98]  R. Malinow,et al.  Postsynaptic Density 95 controls AMPA Receptor Incorporation during Long-Term Potentiation and Experience-Driven Synaptic Plasticity , 2004, The Journal of Neuroscience.

[99]  G. Turrigiano,et al.  PSD-95 promotes the stabilization of young synaptic contacts , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[100]  Dario Anselmetti,et al.  2-photon laser scanning microscopy on native human cartilage , 2005, European Conference on Biomedical Optics.

[101]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[102]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[103]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[104]  Kaiyun Chen,et al.  Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila , 2005, BMC Biology.

[105]  Jun B. Ding,et al.  Dynamic Re-wiring of Neural Circuits in the Motor Cortex in Mouse Models of Parkinson's Disease , 2015, Nature Neuroscience.

[106]  R. Nicoll,et al.  Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression , 2003, The Journal of Neuroscience.

[107]  W. Gan,et al.  Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome , 2010, Proceedings of the National Academy of Sciences.

[108]  Yi Zuo,et al.  Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex , 2005, Nature.

[109]  T. Bonhoeffer,et al.  Experience leaves a lasting structural trace in cortical circuits , 2008, Nature.

[110]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[111]  Morgane M. Roth,et al.  Pyramidal Cells Make Specific Connections onto Smooth (GABAergic) Neurons in Mouse Visual Cortex , 2014, PLoS biology.

[112]  Y. Zuo,et al.  Experience-dependent structural plasticity in the cortex , 2011, Trends in Neurosciences.

[113]  C. Garner,et al.  Mechanisms of vertebrate synaptogenesis. , 2005, Annual review of neuroscience.

[114]  Julie H. Culp,et al.  Protracted and asynchronous accumulation of PSD95‐family MAGUKs during maturation of nascent dendritic spines , 2017, Developmental neurobiology.

[115]  E. White,et al.  Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections , 1980, Journal of neurocytology.

[116]  Tobias Bonhoeffer,et al.  Local calcium transients regulate the spontaneous motility of dendritic filopodia , 2005, Nature Neuroscience.

[117]  K. Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  R. Yuste,et al.  Non-synaptic dendritic spines in neocortex , 2007, Neuroscience.

[119]  Z. J. Huang,et al.  High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression , 2008, PloS one.

[120]  M. Sheng,et al.  PDZ domain proteins of synapses , 2004, Nature Reviews Neuroscience.

[121]  W. Gan,et al.  Dendritic spine dynamics. , 2009, Annual review of physiology.

[122]  Noam E Ziv,et al.  Assembly of New Individual Excitatory Synapses Time Course and Temporal Order of Synaptic Molecule Recruitment , 2000, Neuron.

[123]  T. Bonhoeffer,et al.  Balance and stability of synaptic structures during synaptic plasticity. , 2014, Neuron.

[124]  Kevan A. C. Martin,et al.  Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons , 2007, The Journal of Neuroscience.

[125]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[126]  C. Portera-Cailliau,et al.  Delayed Stabilization of Dendritic Spines in Fragile X Mice , 2010, The Journal of Neuroscience.

[128]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[129]  N. Brose,et al.  Organizers of inhibitory synapses come of age , 2017, Current Opinion in Neurobiology.

[130]  S. Levay,et al.  Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi Preparations , 1973, The Journal of comparative neurology.

[131]  Stephen J. Smith,et al.  The Dynamics of Dendritic Structure in Developing Hippocampal Slices , 1996, The Journal of Neuroscience.

[132]  K. Tabuchi,et al.  Enhanced synapse remodelling as a common phenotype in mouse models of autism , 2014, Nature Communications.

[133]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[134]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[135]  Jochen Herms,et al.  Dendritic Pathology in Prion Disease Starts at the Synaptic Spine , 2007, The Journal of Neuroscience.

[136]  John Lisman,et al.  Synaptic Strength of Individual Spines Correlates with Bound Ca2+–Calmodulin-Dependent Kinase II , 2007, The Journal of Neuroscience.

[137]  T. Murphy,et al.  Extensive Turnover of Dendritic Spines and Vascular Remodeling in Cortical Tissues Recovering from Stroke , 2007, The Journal of Neuroscience.

[138]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[139]  Nils Brose,et al.  The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses , 2012, Current Opinion in Neurobiology.

[140]  Noam E. Ziv,et al.  The Dynamics of SAP90/PSD-95 Recruitment to New Synaptic Junctions , 2001, Molecular and Cellular Neuroscience.

[141]  Santiago Ramón y Cajal,et al.  Neue Darstellung vom histologischen Bau des Centralnervensystems , 1894 .

[142]  E. Nedivi,et al.  Experience-Dependent Structural Plasticity in the Visual System. , 2016, Annual review of vision science.

[143]  C. Moraes,et al.  Mouse models of Parkinson's disease associated with mitochondrial dysfunction , 2013, Molecular and Cellular Neuroscience.

[144]  T. Bonhoeffer,et al.  Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex , 2008, Nature Neuroscience.

[145]  Mriganka Sur,et al.  Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation , 2014, Neuron.

[146]  J. R. Newton,et al.  Remodeling of Synaptic Structure in Sensory Cortical Areas In Vivo , 2006, The Journal of Neuroscience.

[147]  D. O'Leary,et al.  Labeling Neural Cells Using Adenoviral Gene Transfer of Membrane-Targeted GFP , 1996, Neuron.