A scaled, performance driven evaluation of the layered-sensing framework utilizing polarimetric infrared imagery

The layered sensing framework, in application, provides a useful, but complex integration of information sources, e.g. multiple sensing modalities and operating conditions. It is the implied trade-off between sensor fidelity and system complexity that we address here. Abstractly, each sensor/source of information in a layered sensing application can be viewed as a node in the network of constituent sensors. Regardless of the sensing modality, location, scope, etc., each sensor collects information locally to be utilized by the system as a whole for further exploitation. Consequently, the information may be distributed throughout the network and not necessarily coalesced in a central node/location. We present, initially, an analysis of polarimetric infrared data, with two novel features, as one of the input modalities to such a system. We then proceed with statistical and geometric analyses of an example network, thus quantifying the advantages and drawbacks of a specific application of the layered sensing framework.