Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration

Estimation of crop evapotranspiration (ETC) for certain crops such as potato is very important for irrigation planning, irrigation scheduling and irrigation systems management. The primary focus of this study was to investigate the accuracy of the adaptive neurofuzzy inference system (ANFIS) and support vector machines (SVM) for potato ETC estimation when lysimeter measurements or the complete weather data for applying the FAO method are not available. The estimates of the ANFIS and SVM models were compared with the empirical equations of Blaney–Criddle, Makkink, Turc, Priestley–Taylor, Hargreaves and Ritchie. The performances of the different SVM and ANFIS models were evaluated by comparing the corresponding values of root mean square error (RMSE), mean absolute error (MAE) and correlation coefficient (r). The drawn conclusions confirmed that the SVM and ANFIS models could provide more accurate ETC estimates than the empirical equations. Overall, the minimum RMSE (0.042 mm/day) and MAE (0.031 mm/day) values and the maximum r value (0.98) were obtained using the SVM model with mean air temperature, relative humidity, solar radiation, sunshine hours and wind speed as inputs.

[1]  Hossein Tabari,et al.  Regional Estimation of Reference Evapotranspiration in Arid and Semiarid Regions , 2010 .

[2]  Chokri Slim,et al.  Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series , 2008 .

[3]  K. P. Sudheer,et al.  Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique , 2003 .

[4]  Galina Setlak,et al.  THE FUZZY-NEURO CLASSIFIER FOR DECISION SUPPORT , 2008 .

[5]  Ö. Kisi Generalized regression neural networks for evapotranspiration modelling , 2006 .

[6]  Dawei Han,et al.  Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Techniques , 2009 .

[7]  Branimir Todorovic,et al.  Forecasting of Reference Evapotranspiration by Artificial Neural Networks , 2003 .

[8]  Hossein Tabari,et al.  Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model , 2011 .

[9]  W. O. Pruitt,et al.  Crop water requirements , 1997 .

[10]  Slavisa Trajkovic,et al.  Temperature-based approaches for estimating reference evapotranspiration , 2005 .

[11]  H. Gavin,et al.  Modelling actual, reference and equilibrium evaporation from a temperate wet grassland , 2004 .

[12]  Slavisa Trajkovic,et al.  Comparative analysis of 31 reference evapotranspiration methods under humid conditions , 2011, Irrigation Science.

[13]  Luis Alonso,et al.  Robust support vector method for hyperspectral data classification and knowledge discovery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[15]  Dawei Han,et al.  Identification of Support Vector Machines for Runoff Modelling , 2004 .

[16]  Gorka Landeras,et al.  Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain) , 2008 .

[17]  Mohamed Mohandes,et al.  Support vector machines for wind speed prediction , 2004 .

[18]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[19]  Luis S. Pereira,et al.  Validation of the FAO methodology for computing ETo with limited data. Application to south Bulgaria , 2006 .

[20]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[21]  O. Kisi,et al.  Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration , 2011, Irrigation Science.

[22]  Lee Teang Shui,et al.  Daily Evapotranspiration Modeling from Limited Weather Data by Using Neuro-Fuzzy Computing Technique , 2012 .

[23]  E. D. Martonne L'indice d'aridité , 1926 .

[24]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[25]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[26]  Mohsen Assadi,et al.  Development of artificial neural network model for a coal-fired boiler using real plant data , 2009 .

[27]  Ali Aytek,et al.  Co-active neurofuzzy inference system for evapotranspiration modeling , 2009, Soft Comput..

[28]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[29]  Terry J. Gillespie,et al.  Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada , 2010 .

[30]  S. Chauhan,et al.  Performance Evaluation of Reference Evapotranspiration Estimation Using Climate Based Methods and Artificial Neural Networks , 2009 .

[31]  Tienfuan Kerh,et al.  Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone , 2010 .

[32]  Pradeep Kashyap,et al.  Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region , 2001 .

[33]  M. Cobaner Evapotranspiration estimation by two different neuro-fuzzy inference systems , 2011 .

[34]  Tarek Sayed,et al.  Comparison of Adaptive Network Based Fuzzy Inference Systems and B-spline Neuro-Fuzzy Mode Choice Models , 2003 .

[35]  Ozgur Kisi,et al.  Evapotranspiration Modeling Using Linear Genetic Programming Technique , 2010 .

[36]  Hung Soo Kim,et al.  Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling , 2008 .

[37]  Alessandra Conversi,et al.  Comparative Analysis , 2009, Encyclopedia of Database Systems.

[38]  Gürol Yildirim,et al.  Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique , 2009, Adv. Eng. Softw..

[39]  R. López-Urrea,et al.  Testing evapotranspiration equations using lysimeter observations in a semiarid climate , 2006 .

[40]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[41]  M. Razack,et al.  Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy , 2010 .

[42]  Ozgur Kisi,et al.  Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de ‘support vector machines’ , 2009 .

[43]  Marvin E. Jensen,et al.  ASCE's standardized reference evapotranspiration equation. , 2001 .

[44]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[45]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Control , 1985 .

[46]  Ozgur Kisi,et al.  Evapotranspiration modelling from climatic data using a neural computing technique , 2007 .

[47]  Hossein Tabari,et al.  Evaluation of Reference Crop Evapotranspiration Equations in Various Climates , 2010 .

[48]  Daniel S. Weld Comparative Analysis , 1987, IJCAI.

[49]  Hossein Tabari,et al.  Evaluation of Class A Pan Coefficient Models for Estimation of Reference Crop Evapotranspiration in Cold Semi-Arid and Warm Arid Climates , 2010 .

[50]  M. Najim,et al.  Estimating evapotranspiration of irrigated rice at the West Coast of the Peninsular of Malaysia , 2004 .

[51]  Narendra Singh Raghuwanshi,et al.  Estimating Evapotranspiration using Artificial Neural Network , 2002 .

[52]  O. Kisi The potential of different ANN techniques in evapotranspiration modelling , 2008 .

[53]  Richard G. Allen,et al.  Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano) , 2004 .

[54]  Huicheng Zhou,et al.  Ice breakup forecast in the reach of the Yellow River: the support vector machines approach , 2009 .

[55]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[56]  K. P. Sudheer,et al.  Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation , 2008 .

[57]  Ozgur Kisi,et al.  Adaptive Neurofuzzy Computing Technique for Evapotranspiration Estimation , 2007 .