Source efficiency and high-energy neutronics in accelerator-driven systems

Transmutation of plutonium and minor actinides in accelerator-driven systems (ADS) is being envisaged for the purpose of reducing the long-term radiotoxic inventory of spent nuclear reactor fuel. F ...

[1]  S. Pelloni Static analysis of the PDS-XADS LBE and gas-cooled concepts , 2005 .

[2]  Janne Wallenius,et al.  Proton Source Efficiency for Heterogeneous Distribution of Actinides in the Core of an Accelerator-Driven System , 2006 .

[3]  Jr.,et al.  Title: Status Report on the Low-Energy Demonstration Accelerator (LEDA) , 2000 .

[4]  M. Salvatores Accelerator Driven Systems (ADS), physics principles and specificities , 1999 .

[5]  M. Macrì,et al.  Experimental determination of the energy generated in nuclear cascades by a high energy beam , 1995 .

[6]  U. Broccoli,et al.  Validation of Neutronic Methods Applied to the Analysis of Fast Subcritical Systems: the Muse-2 Experiments , 1997 .

[7]  Bo Jung,et al.  Conversion coefficients for use in radiological protection against external radiation. Adopted by the ICRP and ICRU in September 1995. , 1999, Annals of the ICRP.

[8]  Marcus Eriksson,et al.  Reliability Assessment of the LANSCE Accelerator System , 1999 .

[9]  R. Prael Adaptation of the Multistage Preequilibrium Model for the Monte Carlo Method ( I ) , 2022 .

[10]  Toshinobu Sasa,et al.  Neutronics Design for Lead-Bismuth Cooled Accelerator-Driven System for Transmutation of Minor Actinide , 2004 .

[11]  G. Rimpault,et al.  Neutronic Studies in Support of Accelerator-Driven Systems: The MUSE Experiments in the MASURCA Facility , 2004 .

[12]  A. Rineiski,et al.  ON APPLICATION OF QUASISTATIC AND POINT-KINETICS SCHEMES FOR SUBCRITICAL SYSTEMS WITH EXTERNAL NEUTRON SOURCE , 2003 .

[13]  G. R. Keepin,et al.  Physics of Nuclear Kinetics , 1967 .

[14]  M. Salvatores,et al.  Long-lived radioactive waste transmutation and the role of accelerator driven (hybrid) systems , 1998 .

[15]  G. Palmiotti,et al.  Optimized Two-Dimensional S n Transport (BISTRO) , 1990 .

[16]  J. Wallenius,et al.  Application of Burnable Absorbers in an Accelerator-Driven System , 2001 .

[17]  D. G. Cacuci,et al.  On the Neutron Kinetics and Control of Accelerator-Driven Systems , 2004 .

[18]  W. Stacey Nuclear Reactor Physics , 2001 .

[19]  D. Parsons,et al.  On the definition of neutron lifetimes in multiplying and non-multiplying systems , 1997 .

[20]  Spallation neutron production by 0.8, 1.2, and 1.6 GeV protons on various targets , 2001, nucl-ex/0112003.

[21]  D. G. Cacuci,et al.  ON PERTURBATION THEORY AND REACTOR KINETICS: FROM WIGNER'S PILE PERIOD TO ACCELERATOR DRIVEN SYSTEMS , 2002 .

[22]  J. Chen,et al.  Extraction of Am(III) and Eu(III) from Nitrate Solution with Purified Cyanex 301 , 1996 .

[23]  J. Wallenius,et al.  Neutronics of Minor-Actinide Burning Accelerator-Driven Systems with Ceramic Fuel , 2005 .

[24]  C. Fazio,et al.  Summary on the preliminary assessment of the T91 window performance in the MEGAPIE conditions , 2006 .

[25]  David Villamarín Fernández Análisis dinámico del reactor experimental de fisión nuclear muse-4 , 2004 .

[26]  R. Sievert,et al.  Book Reviews : Recommendations of the International Commission on Radiological Protection (as amended 1959 and revised 1962). I.C.R.P. Publication 6. 70 pp. PERGAMON PRESS. Oxford, London and New York, 1964. £1 5s. 0d. [TB/54] , 1964 .

[27]  O Meplan,et al.  The neutron source , 2003 .

[28]  J. Lamarsh Introduction to Nuclear Engineering , 1975 .

[29]  A H.,et al.  MYRRHA : A multipurpose accelerator driven system for research & development , 2001 .

[30]  K. C. Chandler,et al.  HETC: A High Energy Transport Code , 1972 .

[31]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[32]  M. Pelliccioni,et al.  Overview of Fluence-to-Effective Dose and Fluence-to-Ambient Dose Equivalent Conversion Coefficients for High Energy Radiation Calculated Using the FLUKA Code , 2000 .

[33]  J. Barish,et al.  HETFIS: High-energy nucleon-meson transport code with fission , 1981 .

[34]  J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code , 1993 .

[35]  E. Schachinger,et al.  The biological shield of a high-intensity spallation source: a Monte Carlo design study , 2002 .

[36]  W. Yang,et al.  Effects of buffer thickness on ATW blanket performance. , 2001 .

[37]  J. Wallenius,et al.  Definition and Application of Proton Source Efficiency in Accelerator-Driven Systems , 2003 .

[38]  C. Madic,et al.  Sanex-Btp Process Development Studies , 2002 .

[39]  G. Imel,et al.  FIRST MUSE-4 EXPERIMENTAL RESULTS BASED ON TIME SERIES ANALYSIS , 2002 .

[40]  S. Mashnik,et al.  Improved cascade - exciton model of nuclear reactions , 1998, nucl-th/9812069.

[41]  H. Aït Abderrahim,et al.  MYRRHA: A multipurpose accelerator driven system for research & development , 2001 .

[42]  Konings R. j. m. Advanced Fuel Cycles for Accelerator-Driven Systems: Fuel Fabrication and Reprocessing. , 2001 .

[43]  W. S. Snyder,et al.  Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. , 1974, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[44]  J. Wallenius Neutronic aspects of inert matrix fuels for application in ADS , 2003 .

[45]  A. Gandini ON THE PHYSICS OF SUBCRITICAL SYSTEMS , 2002 .

[46]  C. L. Dunford ENDF/B-VI , 1992 .

[47]  David L. Hetrick,et al.  Introductory Nuclear Reactor Dynamics , 1987 .

[48]  M. Salvatores,et al.  The Potential of Accelerator-Driven Systems for Transmutation or Power Production Using Thorium or Uranium Fuel Cycles , 1997 .

[49]  Lloyd S. Nelson,et al.  Technical aids. Propagation of error , 1992 .

[50]  J. Duderstadt,et al.  Nuclear reactor analysis , 1976 .