D1/D5 Dopamine Receptor Activation Differentially Modulates Rapidly Inactivating and Persistent Sodium Currents in Prefrontal Cortex Pyramidal Neurons

Dopamine (DA) is a well established modulator of prefrontal cortex (PFC) function, yet the cellular mechanisms by which DA exerts its effects in this region are controversial. A major point of contention is the consequence of D1 DA receptor activation. Several studies have argued that D1 receptors enhance the excitability of PFC pyramidal neurons by augmenting voltage-dependent Na+ currents, particularly persistent Na+ currents. However, this conjecture is based on indirect evidence. To provide a direct test of this hypothesis, we combined voltage-clamp studies of acutely isolated layer V–VI prefrontal pyramidal neurons with single-cell RT-PCR profiling. Contrary to prediction, the activation of D1 or D5 DA receptors consistently suppressed rapidly inactivating Na+ currents in identified corticostriatal pyramidal neurons. This modulation was attenuated by a D1/D5 receptor antagonist, mimicked by a cAMP analog, and blocked by a protein kinase A (PKA) inhibitor. In the same cells the persistent component of the Na+current was unaffected by D1/D5 receptor activation—suggesting that rapidly inactivating and persistent Na+ currents arise in part from different channels. Single-cell RT-PCR profiling showed that pyramidal neurons coexpressed three α-subunit mRNAs (Nav1.1, 1.2, and 1.6) that code for the Na+ channel pore. In neurons from Nav1.6 null mice the persistent Na+ currents were significantly smaller than in wild-type neurons. Moreover, the residual persistent currents in these mutant neurons—which are attributable to Nav1.1/1.2 channels—were reduced significantly by PKA activation. These results argue that D1/D5 DA receptor activation reduces the rapidly inactivating component of Na+ current in PFC pyramidal neurons arising from Nav1.1/1.2 Na+ channels but does not modulate effectively the persistent component of the Na+current that is attributable to Nav1.6 Na+channels.

[1]  W Zieglgänsberger,et al.  Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. , 1991, Journal of neurophysiology.

[2]  J. C. Stoof,et al.  Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum , 1981, Nature.

[3]  R. Llinás,et al.  Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. James Surmeier,et al.  Molecular and cellular mechanisms of neostriatal function , 1995 .

[5]  E. Gershon,et al.  Protein kinase A reduces voltage-dependent Na+ current in Xenopus oocytes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[7]  J. Glowinski,et al.  Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex , 1984, Brain Research.

[8]  P S Goldman-Rakic,et al.  The “Psychic” Neuron of the Cerebral Cortex , 1999, Annals of the New York Academy of Sciences.

[9]  D. Johnston,et al.  Neuromodulation of dendritic action potentials. , 1999, Journal of neurophysiology.

[10]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[12]  J. Surmeier,et al.  D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. , 1997, Journal of neurophysiology.

[13]  M. G. Marciani,et al.  Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine , 1982, Brain Research.

[14]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[15]  M. Meisler,et al.  Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. , 1998, Genomics.

[16]  J. Caldwell,et al.  Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Bargas,et al.  D 1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca 2 1 Conductance , 1997 .

[18]  Nicholas W. Plummer,et al.  Functional Analysis of the Mouse Scn8a Sodium Channel , 1998, The Journal of Neuroscience.

[19]  P. Schwindt,et al.  Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. , 1985, Journal of neurophysiology.

[20]  A. L. Goldin,et al.  Dopaminergic Modulation of Sodium Current in Hippocampal Neurons via cAMP-Dependent Phosphorylation of Specific Sites in the Sodium Channel α Subunit , 1997, The Journal of Neuroscience.

[21]  A. Goldin Diversity of Mammalian Voltage‐Gated Sodium Channels , 1999, Annals of the New York Academy of Sciences.

[22]  W. Catterall,et al.  Cyclic AMP-dependent phosphorylation of the alpha subunit of the sodium channel in synaptic nerve ending particles. , 1984, The Journal of biological chemistry.

[23]  Etienne Audinat,et al.  Excitation of rat prefrontal cortical neurons by dopamine: An in vitro electrophysiological study , 1987, Brain Research.

[24]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[25]  J. Glowinski,et al.  Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex , 1988, Neuroscience.

[26]  Ming Li,et al.  Functional modulation of brain sodium channels by cAMP-dependent phosphorylation , 1992, Neuron.

[27]  P. Schwindt,et al.  Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[29]  H. Hartmann,et al.  Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain , 1999, Nature Neuroscience.

[30]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[31]  E. Geijo-Barrientos,et al.  The Effects of Dopamine on the Subthreshold Electrophysiological Responses of Rat Prefrontal Cortex Neurons In Vitro , 1995, The European journal of neuroscience.

[32]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[33]  A. L. Goldin,et al.  Phosphorylation of brain sodium channels in the I--II linker modulates channel function in Xenopus oocytes , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  W. Catterall,et al.  Phosphorylation of the alpha subunit of rat brain sodium channels by cAMP-dependent protein kinase at a new site containing Ser686 and Ser687. , 1989, The Journal of biological chemistry.

[35]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[37]  J. Patlak Molecular kinetics of voltage-dependent Na+ channels. , 1991, Physiological reviews.

[38]  A L Goldin,et al.  Functional Analysis of the Rat I Sodium Channel inXenopus Oocytes , 1998, The Journal of Neuroscience.

[39]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[40]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[41]  W. Catterall,et al.  Voltage-Dependent Neuromodulation of Na+ Channels by D1-Like Dopamine Receptors in Rat Hippocampal Neurons , 1999, The Journal of Neuroscience.

[42]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[44]  P. Gaspar,et al.  D1 and D2 Receptor Gene Expression in the Rat Frontal Cortex: Cellular Localization in Different Classes of Efferent Neurons , 1995, The European journal of neuroscience.

[45]  R. Godbout,et al.  Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: Evidence for the involvement of both dopaminergic and GABAergic components , 1992, Neuroscience.

[46]  W. Catterall,et al.  Cyclic-AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. , 1987, The Journal of biological chemistry.

[47]  D. Johnston,et al.  Downregulation of Transient K+ Channels in Dendrites of Hippocampal CA1 Pyramidal Neurons by Activation of PKA and PKC , 1998, The Journal of Neuroscience.

[48]  J. Seamans,et al.  Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  K. Rhodes,et al.  Type I and type II Na+ channel α‐subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain , 1999, The Journal of comparative neurology.

[50]  D. Surmeier,et al.  Dopamine receptor subtypes colocalize in rat striatonigral neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Gall,et al.  Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+ /calmodulin protein kinase gene expression in the rat centrat nervous system , 1992, Neuroscience.

[52]  Ming Li,et al.  Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. , 1993, Science.

[53]  N. Gorelova,et al.  Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. , 2000, Journal of neurophysiology.

[54]  D. Sibley,et al.  Molecular biology of dopamine receptors. , 1992, Trends in pharmacological sciences.

[55]  A. Alonso,et al.  High Conductance Sustained Single-Channel Activity Responsible for the Low-Threshold Persistent Na+ Current in Entorhinal Cortex Neurons , 1999, The Journal of Neuroscience.

[56]  I. Raman,et al.  Altered Subthreshold Sodium Currents and Disrupted Firing Patterns in Purkinje Neurons of Scn8a Mutant Mice , 1997, Neuron.

[57]  N. S. Sekar,et al.  Errors in persistent inward currents generated by space-clamp errors: a modeling study. , 1995, Journal of neurophysiology.

[58]  D. Surmeier,et al.  mRNAs for clozapine-sensitive receptors co-localize in rat prefrontal cortex neurons , 1998, Neuroscience Letters.

[59]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  A. Alonso,et al.  Biophysical Properties and Slow Voltage-Dependent Inactivation of a Sustained Sodium Current in Entorhinal Cortex Layer-II Principal Neurons , 1999, The Journal of general physiology.

[61]  W. Catterall,et al.  Selective phosphorylation of the alpha subunit of the sodium channel by cAMP-dependent protein kinase. , 1982, The Journal of biological chemistry.

[62]  M. Meisler,et al.  Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‘motor endplate disease’ , 1995, Nature Genetics.

[63]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[64]  R Llinás,et al.  Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[65]  M. Meisler,et al.  Mutation Detection in the med and medJ Alleles of the Sodium Channel Scn8a , 1996, The Journal of Biological Chemistry.

[66]  B. Bunney,et al.  Characterization of dopamine‐induced depolarization of prefrontal cortical neurons , 1997, Synapse.

[67]  S. Rossie,et al.  Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel alpha subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. , 1993, The Journal of biological chemistry.

[68]  J. Seamans,et al.  Developing a Neuronal Model for the Pathophysiology of Schizophrenia Based on the Nature of Electrophysiological Actions of Dopamine in the Prefrontal Cortex , 1999, Neuropsychopharmacology.

[69]  J. Vincent,et al.  Dopamine D1 receptor modulates the voltage‐gated sodium current in rat striatal neurones through a protein kinase A. , 1995, The Journal of physiology.

[70]  D. Surmeier,et al.  D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. , 1993, Progress in brain research.

[71]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.