Mechanism-based thermomechanical fatigue life prediction of cast iron. Part I: Models

Abstract In the present paper, mechanism-based models are developed to describe the time and temperature dependent cyclic plasticity and damage of cast iron materials. The cyclic plasticity model is a combination of a viscoplastic model with kinematic hardening and a porous plasticity model to take the effect of graphite inclusions into account. Thus, the model can describe creep, relaxation and the Bauschinger-effect as well as the tension–compression asymmetry often observed for cast iron. The model for thermomechanical fatigue life prediction is based on a crack growth law, which assumes that the crack growth per cycle, da / dN , is correlated with the cyclic crack-tip opening displacement, Δ CTOD . The effect of the graphite inclusions on crack growth is incorporated with a scalar factor into the crack growth law. Both models can describe the essential phenomena which are relevant for cast iron materials.

[1]  J. Leblond,et al.  Effect of void locking by inclusions upon the plastic behavior of porous ductile solids¿I: theoretical modeling and numerical study of void growth , 2004 .

[2]  Hermann Riedel,et al.  Fracture at high temperatures , 1987 .

[3]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[4]  R. Pelloux,et al.  Crack extension by alternating shear , 1970 .

[5]  B. Fedelich,et al.  Simulation of crack growth under low cycle fatigue at high temperature in a single crystal superalloy , 2008 .

[6]  I. Schmidt,et al.  Line‐search methods in general return mapping algorithms with application to porous plasticity , 2008 .

[7]  N. Dowling,et al.  Fatigue Crack Growth During Gross Plasticity and the J-Integral , 1976 .

[8]  S. Suresh Fatigue of materials , 1991 .

[9]  Jarir Aktaa,et al.  Microcrack propagation and fatigue lifetime under non-proportional multiaxial cyclic loading , 2003 .

[10]  Damage effect on the fracture toughness of nodular cast iron: Part I. Damage characterization and plastic flow stress modeling , 1997 .

[11]  G. Smith,et al.  Crack propagation in high stress fatigue , 1962 .

[12]  P. Neumann,et al.  Life prediction for random load fatigue based on the growth behavior of microcracks , 1984 .

[13]  Jean-Baptiste Leblond,et al.  An improved Gurson-type model for hardenable ductile metals , 1995 .

[14]  K.-T. Rie,et al.  Low cycle fatigue and elasto-plastic behaviour of materials--3 , 1987 .

[15]  D. Nissley,et al.  Thermomechanical fatigue life prediction in gas turbine superalloys : a fracture mechanics approach , 1995 .

[16]  L. Coffin,et al.  Low-Cycle Fatigue Damage Mechanisms at High Temperature , 1979 .

[17]  H. Riedel,et al.  Creep Fatigue of Steels in Various Environments , 1987 .

[18]  T. Seifert,et al.  Plastic yielding in cyclically loaded porous materials , 2009 .

[19]  J. Chaboche Time-independent constitutive theories for cyclic plasticity , 1986 .

[20]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[21]  N. Fleck,et al.  Softening by void nucleation and growth in tension and shear , 1989 .

[22]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[23]  Huseyin Sehitoglu,et al.  Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction , 1989 .

[24]  Huseyin Sehitoglu,et al.  Thermo-mechanical fatigue life prediction methods , 1992 .

[25]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[26]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[27]  W. Brocks,et al.  Micromechanical modelling of cyclic plasticity incorporating damage , 2005 .

[28]  Jean-Baptiste Leblond,et al.  Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities , 1994 .

[29]  C. Wüthrich,et al.  The extension of the J-integral concept to fatigue cracks , 1982 .

[30]  W. Brocks,et al.  Damage Models for Cyclic Plasticity , 2003 .

[31]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[32]  Huseyin Sehitoglu,et al.  Thermomechanical fatigue, oxidation, and creep: Part i. Damage mechanisms , 1989 .

[33]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[34]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[35]  Rolf Mahnken,et al.  Aspects on the finite-element implementation of the Gurson model including parameter identification , 1999 .

[36]  Jean-Louis Chaboche,et al.  Cyclic Viscoplastic Constitutive Equations, Part I: A Thermodynamically Consistent Formulation , 1993 .

[37]  T. Seifert,et al.  Efficient and modular algorithms in modeling finite inelastic deformations: Objective integration, parameter identification and sub-stepping techniques , 2007 .

[38]  H. Sehitoglu,et al.  Thermo-Mechanical Fatigue of Mar-M247: Part 2—Life Prediction , 1990 .

[39]  Kumar,et al.  Engineering approach for elastic-plastic fracture analysis , 1981 .

[40]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[41]  Stéphane Chapuliot,et al.  A computational lifetime prediction of a thermal shock experiment. Part II: discussion on difference fatigue criteria , 2006 .

[42]  Michael Vormwald,et al.  Deformation behaviour, short crack growth and fatigue livesunder multiaxial nonproportional loading , 2006 .