Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications

Microwave dielectric ceramics are considered to be one of the key materials of dielectric resonators/filters and have wide application prospects in fifth generation (5G) mobile communication systems. Here we prepared two kinds of low-sintering temperature and high-performance microwave dielectric ceramics with monoclinic rock salt structure by adding a small amount of V2O5 and 0.6CuO–0.4B2O3 sintering aids to Li2Ti0.75(Mg1/3Nb2/3)0.25O3 (LTMN0.25). The sintering temperature of LTMN0.25 ceramics with 2 wt% V2O5 and 1 wt% 0.6CuO–0.4B2O3 additions could be effectively reduced from 1170 °C to below 910 °C due to the liquid phase effects resulting from the additives. Typically, high performance microwave dielectric properties can be obtained in the LTMN0.25 + 2 wt% V2O5 ceramic sintered at 910 °C for 2 h, with a er ∼ 20.7, a Q × f ∼ 60 460 GHz and a TCF ∼ +4.3 ppm °C−1. The best dielectric properties of er ∼ 19.9, a Q × f ∼ 60 950 GHz and a TCF ∼ −6.1 ppm °C−1 were obtained for the samples with 1 wt% 0.6CuO–0.4B2O3 sintered at 870 °C for 2 h. A prototype dielectric resonator antenna (DRA) was fabricated by LTMN0.25 + 1 wt% 0.6CuO–0.4B2O3 ceramic. The antenna resonated at 10.02 GHz with a bandwidth ∼175 MHz at −10 dB transmission loss (S11). Moreover, the chemical compatibility with Ag powder suggests that the LTMN0.25 + 2 wt% V2O5 and LTMN0.25 + 1 wt% 0.6CuO–0.4B2O3 ceramics may be suitable candidates for low temperature co-fired ceramic technology applications.

[1]  L. Pang,et al.  Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O4 solid solution ceramics for LTCC applications , 2019, Journal of the European Ceramic Society.

[2]  G. Dong,et al.  Wideband slot-coupled dielectric resonator-based filter , 2019, Journal of Alloys and Compounds.

[3]  Dawei Wang,et al.  Microwave dielectric properties of temperature‐stable zircon‐type (Bi, Ce)VO 4 solid solution ceramics , 2019, Journal of the American Ceramic Society.

[4]  Jinzhan Su,et al.  Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss , 2018, Journal of Materiomics.

[5]  Shihui Yu,et al.  High‐Q microwave ceramics of Li2TiO3 co‐doped with magnesium and niobium , 2018 .

[6]  Yong Zeng,et al.  Low temperature sintering and microwave dielectric properties of Li2O–3ZnO–5TiO2 ceramics doped with V2O5 , 2018, Journal of Materials Science: Materials in Electronics.

[7]  H. Jantunen,et al.  Ultralow loss CaMgGeO4 microwave dielectric ceramic and its chemical compatibility with silver electrodes for low-temperature cofired ceramic applications , 2018 .

[8]  Ke Xiao,et al.  Opportunistic Multicast NOMA with Security Concerns in a 5G Massive MIMO System , 2018, IEEE Communications Magazine.

[9]  J. Bian,et al.  Structural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1-x(Mg1/3Nb2/3)xO3 , 2018 .

[10]  Dhananjay Singh,et al.  Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems , 2018, Entropy.

[11]  Huaiwu Zhang,et al.  Effects of BaCu(B2O5) addition on microwave dielectric properties of Li2TiO3 ceramics for LTCC applications , 2017 .

[12]  B. Jin,et al.  High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture , 2017 .

[13]  Chunchun Li,et al.  A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure , 2017 .

[14]  H. Jantunen,et al.  Glass-Free CuMoO4 Ceramic with Excellent Dielectric and Thermal Properties for Ultralow Temperature Cofired Ceramic Applications , 2016 .

[15]  G. H. Chen,et al.  Structural and microwave dielectric properties of new CaTi1−x(Al0.5Nb0.5)xO3 thermally stable ceramics , 2016 .

[16]  Zhenqiang Ma,et al.  Stretchable Twisted‐Pair Transmission Lines for Microwave Frequency Wearable Electronics , 2016 .

[17]  Jaime Lloret Mauri,et al.  Advances in Mobile Computing and Communications : Perspectives and Emerging Trends in 5G Networks , 2016 .

[18]  R. Zuo,et al.  Structure, Microwave Dielectric Properties, and Low‐Temperature Sintering of Acceptor/Donor Codoped Li2Ti1−x(Al0.5Nb0.5)xO3 Ceramics , 2016 .

[19]  S. Z. Iliya,et al.  A Comprehensive Survey of Pilot Contamination in Massive MIMO—5G System , 2016, IEEE Communications Surveys & Tutorials.

[20]  Chunchun Li,et al.  Low temperature firing and microwave dielectric properties of BaCaV2O7 ceramics , 2015 .

[21]  Shuren Zhang,et al.  The structure and properties of 0.95MgTiO3–0.05CaTiO3 ceramics doped with Co2O3 , 2014, Journal of Materials Science.

[22]  X. Kuang,et al.  LiCa3ZnV3O12: A novel low-firing, high Q microwave dielectric ceramic , 2014 .

[23]  Y. Gordienko,et al.  Tritium migration in the materials proposed for fusion reactors: Li2TiO3 and beryllium , 2013 .

[24]  J. Zhai,et al.  Dielectric Properties and Low‐Temperature Sintering of the Ba0.6Sr0.4TiO3 Ceramics with B2O3/CuO Additions , 2013 .

[25]  J. Bian,et al.  Structural evolution, sintering behavior and microwave dielectric properties of (1−x)Li2TiO3 + xLiF ceramics , 2013 .

[26]  L. Fang,et al.  Novel Low‐Firing Microwave Dielectric Ceramic LiCa3MgV3O12 with Low Dielectric Loss , 2013 .

[27]  Jing Guo,et al.  Microwave dielectric properties and low temperature firing of (1 − x)Li2Zn3Ti4O12–xLi2TiO3 (0.2 ≤ x ≤ 0.8) ceramics with B2O3–CuO addition , 2013, Journal of Materials Science: Materials in Electronics.

[28]  Kwok Wa Leung,et al.  Dielectric Resonator Antennas: From the Basic to the Aesthetic , 2012, Proceedings of the IEEE.

[29]  Hua-rui Xu,et al.  Microwave Dielectric Properties of Ca4La2Ti5−x(Mg1/3Nb2/3)xO17 Ceramics , 2012 .

[30]  Y. Bo,et al.  The structure and properties of 0.95MgTiO3–0.05CaTiO3 ceramics co-doped with ZnO–ZrO2 , 2012 .

[31]  Liang Fang,et al.  Microwave dielectric properties and its compatibility with silver electrode of LiNb0.6Ti0.5O3 with B2O3 and CuO additions , 2011 .

[32]  Jianguo Guan,et al.  Microwave dielectric properties of Li2TiO3 ceramics sintered at low temperatures , 2011 .

[33]  R. Zuo,et al.  Influence of CuO and B2O3 on sintering and dielectric properties of tungsten bronze type microwave ceramics: a case study in Ba4Nd9.3Ti18O54 , 2011 .

[34]  V. Natarajan,et al.  Rare earth doped lithium titanate (Li2TiO3) for potential phosphor applications , 2010 .

[35]  L. Pang,et al.  Microwave Dielectric Properties of Low‐Firing Li2MO3 (M=Ti, Zr, Sn) Ceramics with B2O3–CuO Addition , 2010 .

[36]  Aldo Petosa,et al.  Dielectric Resonator Antennas: A Historical Review and the Current State of the Art , 2010, IEEE Antennas and Propagation Magazine.

[37]  Hong Wang,et al.  Low temperature firing of BiSbO4 microwave dielectric ceramic with B2O3–CuO addition , 2009 .

[38]  Hong Wang,et al.  Effect of B2O3 and CuO additions on the sintering temperature and microwave dielectric properties of 3Li2O–Nb2O5–3TiO2 ceramics , 2009 .

[39]  X. Chen,et al.  Effects of Ca/Ti Cosubstitution upon Microwave Dielectric Characteristics of CaSmAlO4 Ceramics , 2009 .

[40]  Hong Wang,et al.  Microwave dielectric properties of 3Li2O–Nb2O5–3TiO2 ceramics with Li2O–V2O5 additions , 2009 .

[41]  S. Nahm,et al.  Low‐Temperature Sintering and Microwave Dielectric Properties of V2O5‐Added Zn2SiO4 Ceramics , 2008 .

[42]  M. T. Sebastian,et al.  Dielectric Materials for Wireless Communication , 2008 .

[43]  Chengxiong Huang,et al.  New dielectric material system of x(Mg0.95Zn0.05Ti)O3-(1 - x)Ca0.8Sm0.4/3TiO3 at microwave frequency , 2008 .

[44]  Heli Jantunen,et al.  Low loss dielectric materials for LTCC applications: a review , 2008 .

[45]  S. Jitsukawa,et al.  High energy heavy ion induced structural disorder in Li2TiO3 , 2007 .

[46]  X. Dong,et al.  Influence of V2O5 Additions to 5Li2O–1Nb2O5–5TiO2 Ceramics on Sintering Temperature and Microwave Dielectric Properties , 2007 .

[47]  F. Gao,et al.  Effects of V2O5 addition on the phase-structure and dielectric properties of zinc titanate ceramics , 2007 .

[48]  Heng Chen,et al.  Effect of B2O3 on the sintering and microwave dielectric properties of M-phase LiNb0.6Ti0.5O3 ceramics , 2007 .

[49]  Dong‐Wan Kim,et al.  Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with B2O3 and CuO additions , 2006 .

[50]  Wei Li,et al.  Microwave Dielectric Properties of 5Li2O–0.583Nb2O5–3.248TiO2 Ceramics with V2O5 , 2006 .

[51]  Dong Hyun Kim,et al.  Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics , 2006 .

[52]  Ch Lai,et al.  Novel microwave dielectric LTCCs based uponV2O5 doped M2+Cu2Nb2O8 compounds (M2+ = Zn, Co, Ni, Mg and Ca) , 2006 .

[53]  Longtu Li,et al.  Low-temperature sintered Zn(Nb1−xVx/2)2O6−2.5x microwave dielectric ceramics with high Q value for LTCC application , 2005 .

[54]  P. Davies,et al.  Effect of V2O5 Doping on the Sintering and Dielectric Properties of M‐Phase Li1+x−yNb1−x−3yTix+4yO3 Ceramics , 2004 .

[55]  M. Yoshio,et al.  Peculiar electrochemical behaviors of (1 − x)LiNiO2·xLi2TiO3 cathode materials prepared by spray drying , 2003 .

[56]  Albina Y. Borisevich,et al.  Microwave dielectric properties of Li1+x–yM1–x–3yTix+4yO3 (M=Nb5+, Ta5+) solid solutions , 2001 .

[57]  M. Cassir,et al.  Behaviour of titanium species in molten Li2CO3+Na2CO3 and Li2CO3+K2CO3 in the anodic conditions used in molten carbonate fuel cells ☆: II. Electrochemical intercalation of Li+ in Li2TiO3 at 600 and 650°C , 1999 .

[58]  Di Wu,et al.  Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode , 1997 .

[59]  Lawrence H. Robins,et al.  Investigation of the structure of barium titanate thin films by Raman spectroscopy , 1994 .