Dynamical properties of neuronal systems with complex network structure

An important question in neuroscience is how the structure and dynamics of a neuronal network relate to each other. We approach this problem by modeling the spiking activity of large-scale neuronal networks that exhibit several complex network properties. Our main focus lies on the relevance of two particular attributes for the dynamics, namely structural heterogeneity and degree correlations. Although these are fundamental properties of many brain networks, their influence on the system’s activity is not yet well understood. As a central result, we introduce a novel mean-field method that makes it possible to calculate the average activity of heterogeneous, degree-correlated neuronal networks without having to simulate each neuron explicitly. The method is based on grouping neurons with equal number of inputs (their in-degree) into populations and describing the dynamics of these populations in terms of reduced firing rate equations. We find that the connectivity structure is sufficiently captured by a reduced matrix that contains only the coupling between the populations. This matrix can be calculated analytically for some generic random networks, which allows for an efficient analysis of the system’s dynamics. With the mean-field method and numerical simulations we demonstrate that assortative degree correlations enhance the network’s ability to sustain activity for low external excitation, thus making it more sensitive to small input signals. This effect is reminiscent of an increased structural robustness of assortative networks that is well-known in network sciences. Therefore, we additionally examine the structural robustness of correlated networks with a simplified percolation model, additionally taking into account the fact that neuronal networks among other real-world systems are subject to metric constraints: Spatially close neurons are usually more likely to connect to each other than distant neurons. The main result of this examination is that for weak metric constraints assortativity generally makes the network more robust, whereas for strong metric constraints assortativity can strengthen or weaken the network, depending on its local structure. Therefore, we conclude that degree correlations and metric constraints strongly interplay and that they should not be regarded as independent features of real-world networks.

[1]  Laurent U. Perrinet,et al.  Complex dynamics in recurrent cortical networks based on spatially realistic connectivities , 2012, Front. Comput. Neurosci..

[2]  Alan C. Evans,et al.  Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. , 2007, Cerebral cortex.

[3]  Bernard Sapoval,et al.  The fractal nature of a diffusion front and the relation to percolation , 1985 .

[4]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[5]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[6]  Paul C. Bressloff,et al.  Stochastic Neural Field Theory and the System-Size Expansion , 2009, SIAM J. Appl. Math..

[7]  Giulio Tononi,et al.  Modeling sleep and wakefulness in the thalamocortical system. , 2005, Journal of neurophysiology.

[8]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[9]  M. Sahini,et al.  Applications of Percolation Theory , 2023, Applied Mathematical Sciences.

[10]  Edmund T. Rolls,et al.  Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex , 2007, Biological Cybernetics.

[11]  Stefan Rotter,et al.  Impact of intrinsic biophysical diversity on the activity of spiking neurons , 2012, 1208.5350.

[12]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Stanley Finger,et al.  Origins of neuroscience: A history of explorations into brain function. , 1994 .

[14]  L. Ricciardi,et al.  The Ornstein-Uhlenbeck process as a model for neuronal activity , 1979, Biological Cybernetics.

[15]  H. Amini Bootstrap Percolation in Living Neural Networks , 2009, 0910.0627.

[16]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[17]  H. Stark,et al.  Swimming at Low Reynolds Number: From Sheets to the African Trypanosome , 2012 .

[18]  Slawomir J. Nasuto,et al.  Emergence of a Small-World Functional Network in Cultured Neurons , 2012, PLoS Comput. Biol..

[19]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[20]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[22]  H. Kesten Percolation theory for mathematicians , 1982 .

[23]  Jordi Soriano,et al.  Interplay activity-connectivity: Dynamics in patterned neuronal cultures , 2013 .

[24]  Michael Brecht,et al.  Nanostimulation: manipulation of single neuron activity by juxtacellular current injection. , 2010, Journal of neurophysiology.

[25]  Shun-ichi Amari,et al.  A method of statistical neurodynamics , 1974, Kybernetik.

[26]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[27]  Jordi Soriano,et al.  Quorum percolation in living neural networks , 2010, 1007.5143.

[28]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[29]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[30]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[31]  Barry Horwitz,et al.  The elusive concept of brain connectivity , 2003, NeuroImage.

[32]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[33]  Sten Rüdiger,et al.  Degree Correlations Optimize Neuronal Network Sensitivity to Sub-Threshold Stimuli , 2015, PloS one.

[34]  Duane Q. Nykamp,et al.  A Population Density Approach That Facilitates Large-Scale Modeling of Neural Networks: Analysis and an Application to Orientation Tuning , 2004, Journal of Computational Neuroscience.

[35]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[36]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[37]  Michael I. Ham,et al.  Functional structure of cortical neuronal networks grown in vitro. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  P C Bressloff,et al.  Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Robert A. Kosinski,et al.  Dynamics of the Model of the Caenorhabditis Elegans Neural Network , 2007 .

[40]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[41]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[42]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[43]  Wilten Nicola,et al.  Bifurcations of large networks of two-dimensional integrate and fire neurons , 2013, Journal of Computational Neuroscience.

[44]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[45]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.

[46]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[47]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[48]  Yukio Hayashi A Review of Recent Studies of Geographical Scale-Free Networks , 2005 .

[49]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[50]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[51]  J. Cowan,et al.  Field-theoretic approach to fluctuation effects in neural networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Alison L. Barth,et al.  An Embedded Subnetwork of Highly Active Neurons in the Neocortex , 2010, Neuron.

[53]  S. N. Dorogovtsev,et al.  Bootstrap percolation on complex networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[55]  David Cai,et al.  Cascade-induced synchrony in stochastically driven neuronal networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Benjamin Lindner,et al.  Superposition of many independent spike trains is generally not a Poisson process. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  J F Mejias,et al.  Optimal heterogeneity for coding in spiking neural networks. , 2012, Physical review letters.

[58]  Ray,et al.  Anomalous approach to the self-organized critical state in a model for "life at the edge of chaos" , 1994, Physical review letters.

[59]  J. M. Hammersley,et al.  Percolation theory and its ramifications , 1980 .

[60]  Sergey N. Dorogovtsev,et al.  K-core Organization of Complex Networks , 2005, Physical review letters.

[61]  F. Iglói,et al.  First- and second-order phase transitions in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[63]  Y. Moreno,et al.  Resilience to damage of graphs with degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[65]  I M Sokolov,et al.  Evolving networks with disadvantaged long-range connections. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[67]  André Longtin,et al.  Noise shaping by interval correlations increases information transfer. , 2004, Physical review letters.

[68]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[69]  Changsong Zhou,et al.  Hierarchical organization unveiled by functional connectivity in complex brain networks. , 2006, Physical review letters.

[70]  Samuel Johnson,et al.  Enhancing neural-network performance via assortativity , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[73]  Bruce W. Knight,et al.  Dynamics of Encoding in a Population of Neurons , 1972, The Journal of general physiology.

[74]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[75]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[76]  S. Melnik,et al.  Analytical results for bond percolation and k-core sizes on clustered networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[78]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[79]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[80]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[81]  Sergio Gómez,et al.  Emergence of Assortative Mixing between Clusters of Cultured Neurons , 2014, PLoS Comput. Biol..

[82]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[83]  Abbott,et al.  Asynchronous states in networks of pulse-coupled oscillators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Alessandro Vespignani,et al.  Large scale networks fingerprinting and visualization using the k-core decomposition , 2005, NIPS.

[85]  Hyunggyu Park,et al.  Finite-size scaling in complex networks. , 2007, Physical review letters.

[86]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[87]  Tao Zhou,et al.  Optimal synchronizability of networks , 2007 .

[88]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[89]  Paczuski,et al.  Avalanches and 1/f noise in evolution and growth models. , 1994, Physical review letters.

[90]  Sitabhra Sinha,et al.  Assortative mixing by degree makes a network more unstable , 2005 .

[91]  Bruce W. Knight,et al.  Dynamics of Encoding in Neuron Populations: Some General Mathematical Features , 2000, Neural Computation.

[92]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[93]  S Rüdiger,et al.  A k-population model to calculate the firing rate of neuronal networks with degree correlations , 2014, BMC Neuroscience.

[94]  Lawrence Sirovich,et al.  On the Simulation of Large Populations of Neurons , 2004, Journal of Computational Neuroscience.

[95]  A. Kihara,et al.  Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. , 2006, Journal of neurobiology.

[96]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[97]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[98]  Shlomo Havlin,et al.  Diffusion on percolation clusters at criticality , 1982 .

[99]  Bartlett W. Mel,et al.  Encoding and Decoding Bursts by NMDA Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[100]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[101]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[102]  Stefan Wuchty,et al.  Peeling the yeast protein network , 2005, Proteomics.

[103]  B Gluss,et al.  A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. , 1967, The Bulletin of mathematical biophysics.

[104]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[105]  Alessandro Vespignani,et al.  The effects of spatial constraints on the evolution of weighted complex networks , 2005, physics/0504029.

[106]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[107]  Viktor K. Jirsa,et al.  Connectivity and dynamics of neural information processing , 2007, Neuroinformatics.

[108]  A. Reyes,et al.  Relation between single neuron and population spiking statistics and effects on network activity. , 2006, Physical review letters.

[109]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[110]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[111]  Jun Li,et al.  Brain Anatomical Network and Intelligence , 2009, NeuroImage.

[112]  E. Hertzberg,et al.  Gap junctions: New tools, new answers, new questions , 1991, Neuron.

[113]  Dietmar Plenz,et al.  Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches , 2009, PLoS Comput. Biol..

[114]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[115]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[116]  Jean-Pierre Eckmann,et al.  The physics of living neural networks , 2007, 1007.5465.

[117]  Gasper Tkacik,et al.  Information capacity of genetic regulatory elements. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  Walter H. Stockmayer,et al.  Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers , 1943 .

[119]  Everett M. Rogers,et al.  Communication Networks: Toward a New Paradigm for Research , 1980 .

[120]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[121]  M. Chacron,et al.  Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[123]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[124]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[125]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[126]  Reuven Cohen,et al.  Percolation critical exponents in scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[127]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[128]  Nicholas T. Carnevale,et al.  Simulation of networks of spiking neurons: A review of tools and strategies , 2006, Journal of Computational Neuroscience.

[129]  Analyzing fragmentation of simple fluids with percolation theory , 1999, cond-mat/9911435.

[130]  S. Teller,et al.  Experiments on clustered neuronal networks , 2013 .

[131]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[132]  R. L. Beurle Properties of a mass of cells capable of regenerating pulses , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[133]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[134]  R. Zecchina,et al.  Ferromagnetic ordering in graphs with arbitrary degree distribution , 2002, cond-mat/0203416.

[135]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[136]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[137]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[138]  Paul Erdös,et al.  On random graphs, I , 1959 .

[139]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[140]  Anthony N. Burkitt,et al.  A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties , 2006, Biological Cybernetics.

[141]  Jaume Casademunt,et al.  Noise focusing and the emergence of coherent activity in neuronal cultures , 2013, Nature Physics.

[142]  M. Newman,et al.  On the uniform generation of random graphs with prescribed degree sequences , 2003, cond-mat/0312028.

[143]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[144]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[145]  J. Touboul,et al.  Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons , 2012, The Journal of Mathematical Neuroscience.

[146]  P. Latham,et al.  Ruling out and ruling in neural codes , 2009, Proceedings of the National Academy of Sciences.

[147]  David McLaughlin,et al.  Coarse-Grained Reduction and Analysis of a Network Model of Cortical Response: I. Drifting Grating Stimuli , 2002, Journal of Computational Neuroscience.

[148]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[149]  R. Capocelli,et al.  Diffusion approximation and first passage time problem for a model neuron , 1971, Biological cybernetics.

[150]  J Soriano,et al.  Percolation of spatially constrained Erdős-Rényi networks with degree correlations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[151]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[152]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[153]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[154]  M. Serrano,et al.  Percolation and epidemic thresholds in clustered networks. , 2006, Physical review letters.

[155]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[156]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[157]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[158]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[159]  Jennifer Badham,et al.  A Spatial Approach to Network Generation for Three Properties: Degree Distribution, Clustering Coefficient and Degree Assortativity , 2010, J. Artif. Soc. Soc. Simul..

[160]  Louis Tao,et al.  Fokker-Planck description of conductance-based integrate-and-fire neuronal networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  Alessandro Vespignani,et al.  Absence of epidemic threshold in scale-free networks with degree correlations. , 2002, Physical review letters.

[162]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[163]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[164]  L. Sander,et al.  Geography in a scale-free network model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  Eshel Ben-Jacob,et al.  Engineered Neuronal Circuits: A New Platform for Studying the Role of Modular Topology , 2011, Front. Neuroeng..

[166]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[167]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[168]  Louis Tao,et al.  The role of fluctuations in coarse-grained descriptions of neuronal networks , 2012 .

[169]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[170]  Marc Barthelemy Crossover from scale-free to spatial networks , 2002 .

[171]  S. Solomon,et al.  Social percolation models , 1999, adap-org/9909001.

[172]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[173]  G. Edelman,et al.  A Universe Of Consciousness: How Matter Becomes Imagination , 2000 .

[174]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[175]  Ramon Xulvi-Brunet Structural properties of scale-free networks , 2007 .

[176]  Alex Roxin,et al.  The Role of Degree Distribution in Shaping the Dynamics in Networks of Sparsely Connected Spiking Neurons , 2011, Front. Comput. Neurosci..

[177]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[178]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[179]  I. Sokolov,et al.  Reshuffling scale-free networks: from random to assortative. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[180]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[181]  Anthony G. Phillips,et al.  Brain reward circuitry: A case for separate systems , 1984, Brain Research Bulletin.

[182]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[183]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[184]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[185]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[186]  Arnab Chatterjee,et al.  Small-world properties of the Indian railway network. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[187]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[188]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[189]  O. Sporns Discovering the Human Connectome , 2012 .

[190]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[191]  Theoden I. Netoff,et al.  Synchronization from Second Order Network Connectivity Statistics , 2011, Front. Comput. Neurosci..

[192]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[193]  L. M. Ricciardi,et al.  Diffusion approximation for a multi-input model neuron , 1976, Biological Cybernetics.

[194]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[195]  Stefan Rotter,et al.  The relevance of network micro-structure for neural dynamics , 2013, Front. Comput. Neurosci..

[196]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[197]  Y Iida,et al.  Transportation Network Analysis , 1997 .

[198]  G. Tononi Consciousness as Integrated Information: a Provisional Manifesto , 2008, The Biological Bulletin.

[199]  Albert Y. Zomaya,et al.  Assortative mixing in directed biological networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[200]  Wulfram Gerstner,et al.  Associative memory in a network of ‘spiking’ neurons , 1992 .

[201]  Dante R. Chialvo Critical brain networks , 2004 .

[202]  N. Sator,et al.  Percolation line of self-bound clusters in supercritical fluids , 2000, cond-mat/0005348.

[203]  Daqing Li,et al.  Download details: IP Address: 129.74.250.206 , 2011 .

[204]  Marian Stamp Dawkins,et al.  The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. By Edmund T. Rolls & Gustavo Deco. Oxford: Oxford University Press (2010). Pp. 310. Price £37.95 hardback. , 2010, Animal Behaviour.

[205]  Paul H. E. Tiesinga,et al.  Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity , 2013, Front. Comput. Neurosci..

[206]  A. Bunde,et al.  Percolation in Composites , 2000 .

[207]  Nicolas Brunel,et al.  Lapicque’s 1907 paper: from frogs to integrate-and-fire , 2007, Biological Cybernetics.

[208]  Amir Ayali,et al.  Emergence of Small-World Anatomical Networks in Self-Organizing Clustered Neuronal Cultures , 2013, PloS one.

[209]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[210]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[211]  J. W. Essam,et al.  Percolation theory , 1980 .

[212]  John M. Beggs,et al.  Being Critical of Criticality in the Brain , 2012, Front. Physio..

[213]  L. Maler,et al.  Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli , 2001, The Journal of Neuroscience.

[214]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[215]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[216]  Karl J. Friston Modalities, Modes, and Models in Functional Neuroimaging , 2009, Science.

[217]  O. Sporns Networks of the Brain , 2010 .

[218]  F. Sommer,et al.  Global Relationship between Anatomical Connectivity and Activity Propagation in the Cerebral Cortex , 2022 .

[219]  Jordi Soriano,et al.  Development of input connections in neural cultures , 2008, Proceedings of the National Academy of Sciences.

[220]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[221]  Andrea Mechelli,et al.  A report of the functional connectivity workshop, Dusseldorf 2002 , 2003, NeuroImage.

[222]  S N Dorogovtsev,et al.  Percolation on correlated networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[223]  R. Merton Social Theory and Social Structure , 1958 .

[224]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[225]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[226]  M. Shelley,et al.  An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[227]  L. Abbott,et al.  Two layers of neural variability , 2012, Nature Neuroscience.

[228]  Hiroshi Fukuda,et al.  The Overlapping Community Structure of Structural Brain Network in Young Healthy Individuals , 2011, PloS one.

[229]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[230]  Anthony Randal McIntosh,et al.  Towards a network theory of cognition , 2000, Neural Networks.

[231]  S. Bressler Understanding Cognition Through Large-Scale Cortical Networks , 2002 .

[232]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[233]  D. Spray,et al.  Gap junctions in the brain: where, what type, how many and why? , 1993, Trends in Neurosciences.

[234]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[235]  E. Adrian,et al.  The impulses produced by sensory nerve‐endings , 1926 .

[236]  PAUL,et al.  Molecular Size Distribution in Three Dimensional Polymers , 2022 .

[237]  J.-P. Eckmann,et al.  Remarks on bootstrap percolation in metric networks , 2009 .

[238]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[239]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[240]  J. M. Hammersley,et al.  Comparison of Atom and Bond Percolation Processes , 1961 .

[241]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[242]  Massimo Marchiori,et al.  Is the Boston subway a small-world network? , 2002 .

[243]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[244]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[245]  David Strauss On a general class of models for interaction , 1986 .

[246]  Marc Benayoun,et al.  Avalanches in a Stochastic Model of Spiking Neurons , 2010, PLoS Comput. Biol..

[247]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[248]  S. Havlin,et al.  Dimension of spatially embedded networks , 2011 .

[249]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[250]  Parongama Sen,et al.  Modulated scale-free network in Euclidean space. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[251]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[252]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[253]  Eshel Ben-Jacob,et al.  Engineered self-organization of neural networks using carbon nanotube clusters , 2005 .

[254]  S. Panzeri,et al.  An exact method to quantify the information transmitted by different mechanisms of correlational coding. , 2003, Network.

[255]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[256]  G. Alexanderson About the cover: Euler and Königsberg’s Bridges: A historical view , 2006 .

[257]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[258]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[259]  Matthias H Hennig,et al.  Early-Stage Waves in the Retinal Network Emerge Close to a Critical State Transition between Local and Global Functional Connectivity , 2009, The Journal of Neuroscience.

[260]  Jordi Soriano,et al.  Percolation in living neural networks. , 2006, Physical review letters.

[261]  H. Stanley,et al.  Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents , 1977 .

[262]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[263]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[264]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[265]  Erwin H. Ackerknecht,et al.  Mind, Brain and Adaptation in the Nineteenth Century. Cerebral Localization and its Biological Context from Gall to Ferrier , 1971, Medical History.

[266]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[267]  Jae Dong Noh Percolation transition in networks with degree-degree correlation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[268]  Claire Wyart,et al.  Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces , 2002, Journal of Neuroscience Methods.

[269]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[270]  Melanie Hartmann Spikes Exploring The Neural Code Computational Neuroscience , 2016 .

[271]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[272]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[273]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[274]  Elena Agliari,et al.  Immune networks: multi-tasking capabilities at medium load , 2013, 1302.7259.

[275]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[276]  Jay R. Goldman,et al.  Stochastic Point Processes: Limit Theorems , 1967 .

[277]  G. Mitchison Neuronal branching patterns and the economy of cortical wiring , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[278]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[279]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[280]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[281]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[282]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[283]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[284]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[285]  Dietrich Stauffer,et al.  Diffusion on random systems above, below, and at their percolation threshold in two and three dimensions , 1984 .